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To evaluate systemic risk has been a central subject in economic
and financial problems. One method to evaluate systemic risk is “Co-
VaR”, which represents the relationship of quantiles of the asset re-
turns. In order to naturally use “CoVaR”, we construct an asymmet-
ric copula such that conditional median of one random variable is
not influenced by the other. We find that the empirical CoVaR of the
Nikkei index evaluated by the new copula is more stable than the
usual symmetric copula. We propose a new method to construct the
optimal portfolio by considering CoVaR and numerical results for the
GPIF are shown with our new asymmetric copula.

1. Introduction. After the financial crisis caused by the bankruptcy of Lehman Broth-
ers in 2008 and 2009, the word “too big to fail” has spread all over the United States. The
unprecedented financial crisis and recession made economists, financiers and econometri-
cians consider a new measure of systemic risks of a financial firm in an entire financial
system (Acharya, Engle and Richardson (2012)). One factor of the financial solvency of a
financial firm is usually evaluated by its capital buffer, sometimes defined as

CB = E− k(D + E), 0 < k < 1,

where E denotes the market value of its equity and D denotes the book value of its debt. If
we assume that the systemic event debt cannot be renegotiated, then the equity, and thus
the capital buffer is determined by the asset return over time. Therefore, the new measure
of systemic risks is often defined in terms of the asset return of the certain financial firm.

One approach receiving notable attention, called “CoVaR”, has been proposed in Adrian
and Brunnermeier (2011). Although VaR, the value at risk, has been widely used to eval-
uate the financial risk in various situations, it does not capture the latent systemic risks
associated with any one other individual financial firm. The definition of “CoVaR” is given
below.

Definition 1.1. Let R0 be the asset return. VaR0 at level τ -quantile is defined by

VaR0(τ) = inf{x ∈ R; P(R0 ≤ x) ≥ τ}.
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Suppose Ri and Rm denote respectively the asset returns of institution i and market. Then
CoVaRi conditional on institution i is defined by

(1.1) CoVaRi(τ, τ
∗) = inf{x ∈ R; P(Rm ≤ x | Ri = VaRi(τ

∗)) ≥ τ}.

To evaluate CoVaR, we have to know the joint distribution of the asset returns of insti-
tution i and market. One statistical approach is to use the copula to express it. The copula
C : [0, 1]d → [0, 1] is a function that decomposes the joint distribution to its marginals as

P(X1 ≤ x1, · · · , Xd ≤ xd) = C(FX1(x1), · · · , FXd
(xd)),

where FX1 , . . . , FXd
are the marginal distribution of random variables X1, . . . , Xd. The

properties of copula function can be found in Nelsen (2007). We restrict our focus on the
special case of d = 2 in this paper since we are interested in the evaluation of CoVaR.

Another intuition from statistics tells us to consider (1.1) in the sense of conditional
quantile. A popular method to investigate the conditional quantile is the quantile regression,
which is introduced in Koenker and Bassett (1978). As an alternative to ordinary least
squares to determine the relationship between random variables, the method has been in
the spotlight. From basics to applications, see Koenker (2005). For comprehensive approach
to conditional quantile, Hua and Joe (2014) and Bernard and Czado (2015) are referred to.
One attractive point of quantile-based inference is that it does not require that the random
variables under consideration have finite moments. The treatment of random variables
with infinite variance always puzzles the economists, financiers and econometricians. For
this reason, the new concept CoVaR is appreciated on its own merits. Our goal is to
find the optimal portfolio of the Government Pension Investment Fund (GPIF), whose
assets under management amount to almost 140 trillion Yen. It is genuinely “too big to
fail” financial system. At the same time, to evaluate its risk becomes the cause of worry
for its management committee. We apply CoVaR to the evaluation of the systemic risk
and furthermore construct the optimal portfolio for the GPIF. The unique idea in this
paper is that we generated a new copula such that conditional median of one random
variable is not influenced by the other random variable. Generally, this property does not
hold when we only consider symmetric copulas. Further, the invariant conditional median
seems more natural when we model financial returns. Our new method to construct the
optimal portfolio of the GPIF by evaluating systemic risks is not trivial, so the change
of the optimal portfolio according to the change of the corresponding quantile τ∗ is not
monotone, either. The numerical results could be referred to for the management of the
systemic risk of the GPIF.

This paper is organized as follows. In Section 2, we consider the conditional quantile
independence in general. In Section 3, we provide a new copula such that conditional
median of one random variable is not affected by the other random variable. Empirical
results for comparison of our asymmetric copula and usual symmetric copula by the Nikkei
index are provided in Section 4. In Section 5, we present the new portfolio method with
CoVaR and the optimal portfolio of the GPIF under the evaluation of CoVaR.
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2. CoVaR independent of τ ∗. In this section, we consider CoVaRi(τ, τ
∗) indepen-

dent of any τ∗. It is of some theoretical interest to study this special relationship between
two continuous random variables X and Y , whose joint distribution is defined by the copula
C. The concept can be formulated by

(i) the joint distribution of (X,Y ):

(2.1) FX,Y (x, y) = C(FX(x), FY (y));

(ii) the quantile of Y independence of X:

(2.2) QY |X(τ | X) = QY (τ) almost surely.

From Sklar’s Theorem, the existence of copula C in (2.1) is guaranteed and C is unique.
Under this formulation, it is straightforward to see that the concept of CoVaR is

CoVaRX(τ, τ∗) = QY |X(τ | X = QX(τ∗)).

This concept stems from careful considerations on the dependence between the τ -quantile
level of random variable Y and the τ∗-quantile level of random variable X. This is obviously
different from the dependent relationships between two random variables in the mean level.
Shao and Zhang (2014) considered the following three relationships between two random
variables:

(i) The random variables X and Y are uncorrelated:

Cov(X,Y ) = 0;

(ii) The conditional mean of Y given X is independent of X:

E (Y | X) = EY almost surely;

(iii) The random variables X and Y are mutually independent:

X ⊥ Y.

It is not difficult to see that (iii) is the strongest concept among all three relationships.
The order of these three concepts is (iii) ⇒ (ii) ⇒ (i). It has to be noted, however, that
these three concepts are well-defined on the different spaces. While (iii) is defined by any
real-valued random variables on probability space Ω, (ii) and (i) are well-defined on L1(Ω)
and L2(Ω), respectively.

To well grasp the relationships between random variables X and Y , the scope is not
supposed to be restricted to a specific subspace for random variables. This leads us to
consider a moment-free relationship (2.2) at each quantile level τ∗ and τ between random
variables X and Y .
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Let us consider the expression for the τth quantile of the distribution of Y conditional
on X. From (2.1), we have

C(u, v) = FX,Y (F
−1
X (u), F−1

Y (v)),

for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. Furthermore, it is not difficult to see that

(2.3)
∂C(u, v)

∂u
= FY |X(F−1

Y (v) | F−1
X (u)) := C∗(v | u).

Thus, the τ -th quantile of the distribution of Y conditional on X is expressed by

(2.4) QY |X(τ | F−1
X (τ∗)) = QY (C

−1
∗ (τ | τ∗)).

Suppose (U, V ) = (FX(X), FY (Y )). Then (U, V ) has uniformly distributed marginals on
[0, 1]. From the equivalence of the σ-algebra generated by F−1

X (U) and X for continuous
random variables, we can interpret the statement (2.2) as

C−1
∗ (τ | U) = τ, almost surely,

for uniformly distributed random variable U on [0, 1].
Obviously, the conditional quantile independence (2.2) at any quantile level τ is equiv-

alent to (iii) the independence between X and Y . The conditional quantile independence,
however, at any specific quantile level τ is possible. The specification in quantile τ of Y
given quantile τ∗ of X makes us magnify the property of independence at a local area of
the neighborhood of τ . We explain the former property in the following examples and leave
the latter to the next section.

Example 1. Suppose C : [0, 1]2 → [0, 1] is a bivariate copula defined in each case.

(I) Independent copula C(u, v) = uv.

From the definition of C∗(v, u), we have

C∗(v | u) = v.

For any τth quantile of the distribution of Y conditional on X,

C−1
∗ (τ | U) = τ, almost surely.

Therefore, we obtain
QY |X(τ | X) = F−1

Y (τ) = QY (τ).

In consequence, (iii) the independence between X and Y implies conditional quantile
independence (2.2) at any τ -quantile.
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Given τ = 0.01, 0.1, 0.5, 0.9, 0.99 from below to above in Figure 1, we show the
conditional quantile QY |X(τ | X) when (X,Y ) has standard normal distributed
marginals at left hand side and (X,Y ) has standard Cauchy distributed marginals
at right hand side.

(a) X ∼ N(0, 1) and Y ∼ N(0, 1). (b) X ∼ C(0, 1) and Y ∼ C(0, 1).

Fig 1: Conditional quantile QY |X(τ | X = x) with different marginal distributions.

(II) Other well-known copula functions.

To fully understand the conditional quantile independence (2.2), we investigated
the necessary and sufficient condition for each following well-known copula. The
approach to consider the well-known copulas, however, is not helpful to find the sit-
uation that conditional quantile independence happens at some specific quantile but
the full independence (iii) does not. To see the reason, we return back to equations
(2.3)–(2.4). The existence of the conditional quantile τ requires that (2.3) is a func-
tion of v. On the other hand, we require that QY |X(τ | X) in (2.4) is independent
of X from the conditional quantile independence. As a result, ∂C(u, v)/∂u has to
be a function of v but independent of u. This is impossible other than the case of
the independent copula. The following well-known copulas from Bouyé and Salmon
(2009) are some examples:

• For Ali-Mikhail-Haq copula

(2.5) C(u, v; d) =
uv

1− d(1− u)(1− v)
, −1 ≤ d < 1,

(2.2) holds if and only if d = 0.

• For Frank copula

C(u, v; d) = −1

d
log

(
1 +

(exp(−du)− 1)(exp(−dv)− 1)

exp(−d)− 1

)
, d ̸= 0,
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(2.2) holds if and only if d → 0.

• For Farlie-Gumbel-Morgenstern copula

C(u, v; d) = uv
(
1 + d(1− u)(1− v)

)
, −1 ≤ d ≤ 1,

(2.2) holds if and only if d = 0.

• For Gumbel-Hougaard copula

C(u, v; d) = exp
(
−
[
(− log u)d + (− log v)d

]1/d)
, d ≥ 1,

(2.2) holds if and only if d = 1.

• For Joe copula

C(u, v; d) = 1−
(
(1− u)d + (1− v)d − (1− u)d(1− v)d

)1/d
, d ≥ 1,

(2.2) holds if and only if d = 1.

In all above examples, we omit the calculation processes since they are easy to check.
It is seen that the condition for the parameter d makes the corresponding copula be
the independent copula. From the heuristics points, we give the quantile dependence
of standard normal marginals in Frank copula in Figure 2 with d = 16 at the left
hand side and d = 1 at the right hand side. τ is defined as 0.01, 0.1, 0.5, 0.9, 0.99
from below to above. All these results match our previous explanation.

(a) d = 16 in Frank copula. (b) d = 1 in Frank copula.

Fig 2: Conditional quantile QY |X(τ | X = x) with different parameter d in Frank copula.
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3. CoVaR locally independent of τ ∗. In this section, we consider the example of
local independence between the τ - and τ∗-quantile level of random variables Y and X.
As what we have seen in the last section, the local independence between two different
quantile levels does not happen if the copula function is symmetric except the trivial case.
On the other hand, the study of asymmetric copula has still been undeveloped so far.

In the following, we show an example of asymmetric copula whose marginals are locally
quantile independent at τ = τ∗ = 1/2.

Example 2 (A copula C(u, v) satisfying QY |X(1/2 | X) = QY (1/2) a.s.). To construct
an asymmetric copula, we apply the method suggested in Wu (2014). Consider Ali-Mikhail-
Haq copula (2.5). From Theorem 1 in Wu (2014),

Č(u, v; d) = C(u, 1; d)− C(u, 1− v; d)

=
uv(1 + d(u− 1))

1 + d(u− 1)v

is also a bivariate copula. Applying Lemma 4 in Wu (2014), we obtain a new copula

Ĉ(u, v; d) =
1

2
C(u, v; d) +

1

2
Č(u, v; d)(3.1)

=
uv

2(1− d(1− u)(1− v))
+

1

2

(
u− u(1− v)

1− d(1− u)v

)
.

This copula is obviously not the independent copula if d ̸= 0. We exclude the case of d = 0.
In reality, this copula (3.1) satisfies

(3.2) QY |X(1/2 | X) = QY (1/2).

After some tedious calculations, we obtain

∂Ĉ(u, v)

∂u
=

v

2(1− d(1− u)(1− v))
− du(1− v)v

2(1− d(1− u)(1− v))2

+
1

2

(
1 +

du(1− v)v

(1− d(1− u)v)2
− 1− v

1− d(1− u)v

)
.

This is a function of u and v, so it guarantees the existence of the inverse function of τ .
Furthermore, since

τ =
∂Ĉ(u, v)

∂u

∣∣∣∣∣
v=1/2

= 1/2

is independent of u, (3.2) has been shown.
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Now, let us observe the new copula defined by (3.1). Suppose (X,Y ) are marginally
distributed as standard normal. We generated the following scatter plots with the sample
size 103. As we mentioned in Example 2, when d = 0, it is independent copula (Figure 3).

Fig 3: Independent copula with standard normal marginals.

On the contrary, we plotted (3.1) for the case of d = −0.9 and 0.9 in Figure 4. Obviously,
the samples from the joint distribution of (X,Y ) are not symmetric.

(a) d = −0.9 in (3.1). (b) d = 0.9 in (3.1).

Fig 4: Scatter plot of new copula (3.1) with d = −0.9 (left) and d = 0.9 (right).

Next, we observe the changes in the conditional τth quantile of the new copula con-
ditional on X = x. τ is defined as 0.01, 0.1, 0.5, 0.9, 0.99 from below to above in Figure
5.
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(a) d = −0.9 in (3.1). (b) d = 0.9 in (3.1).

Fig 5: Conditional quantile of new copula (3.1) with d = −0.9 (left) and d = 0.9 (right).

In either case above, the quantiles of both marginals X and Y are not symmetric. We
see that the median of Y does not influenced by the change of the quantile of X, which is
corresponding to what we have shown above.

4. Empirical results. In this section, we study the current situations of the Nikkei
index from the point of view of systemic risks. We use the Gumbel-Hougaard copula and
the new copula (3.1) as models for comparison. Our focus is on the CoVaR of the Nikkei
index conditional on the asset returns of the following financial institutions (Table 1).

Table 1
The list of financial institutions.

i Stock Code Financial institution

1 8306 MUFG

2 8308 Resona Group (RG)

3 8316 Sumitomo Mitsui Financial Group (SMFG)

4 8411 Mizuho Financial Group (MFG)

5 8601 Daiwa Securities Group Inc. (DSGI)

6 8725 MS&AD Holdings (MH)

The observations are taken from the weekly closing price of all above institutions ranging
from April 5, 2008 to May 2, 2015. The sample size is 370. The log return of each institution
and the Nikkei index is used as the asset return. The log return of each institution i =
1, . . . , 6 is given in Figure 6 and that of the Nikkei index is given in Figure 7.
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(a) Log return of MUFG. (b) Log return of RG.

(c) Log return of SMFG. (d) Log return of MFG.

(e) Log return of DSGI. (f) Log return of MH.

Fig 6: Log returns of institutions i = 1, . . . , 6.
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Fig 7: Log return of the Nikkei index.

Next, we made the scatter plots between each institution and the Nikkei index in Figure
8 to see the interrelationship between the return of certain financial firm and that of market.

(a) Scatter plot of returns of Nikkei and MUFG. (b) Scatter plot of returns of Nikkei and RG.

(c) Scatter plot of returns of Nikkei and SMFG. (d) Scatter plot of returns of Nikkei and MFG.
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(e) Scatter plot of returns of Nikkei and DSGI. (f) Scatter plot of returns of Nikkei and MH.

Fig 8: Scatter plots between return of Nikkei and that of institutions i = 1, . . . , 6.

Melchiori (2003) suggests the Gumbel-Hougaard copula for financial modeling. We sum-
marized the estimated parameter d, in Gumbel-hougaard copula for each joint distribution
between the log returns of ith institution and the Nikkei index, 5% VaR and 5%–1%, 5%–
5% and 5%–10% CoVaR of the Nikkei index against each institution in Table 2. Here, each
log return of institutions and the Nikkei index is supposed to be normal distribution.

Table 2
The Nikkei’s VaR and CoVaR according to the Gumbel-Hougaard copula.

Institution d 5% VaR CoVaR(5%, 1%) CoVaR(5%, 5%) CoVaR(5%, 10%)

1 2.2121 −0.0552 −0.0961 −0.0818 −0.0737

2 1.6888 −0.0552 −0.0870 −0.0771 −0.0715

3 2.0687 −0.0552 −0.0937 −0.0806 −0.0731

4 1.9966 −0.0552 −0.0932 −0.0804 −0.0732

5 2.3479 −0.0552 −0.0945 −0.0798 −0.0716

6 2.3116 −0.0552 −0.0966 −0.0817 −0.0734

Next, we use new asymmetric copula (3.1) to model the joint returns of the Nikkei index
and each institution i. As what we did above, we summarized the estimated parameter
d in the new asymmetric copula for each joint distribution. In addition, we list 5% VaR
and 5%–1%, 5%–5% and 5%–10% CoVaR of the Nikkei index against each institution in
Table 3. Here, each log return of institutions and the Nikkei index is supposed to be normal
distribution.
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Table 3
The Nikkei’s VaR and CoVaR according to new copula.

Institution d 5% VaR CoVaR(5%, 1%) CoVaR(5%, 5%) CoVaR(5%, 10%)

1 −1.0000 −0.0552 −0.0587 −0.0583 −0.0579

2 −1.0000 −0.0552 −0.0589 −0.0585 −0.0581

3 −1.0000 −0.0552 −0.0588 −0.0585 −0.0580

4 −1.0000 −0.0552 −0.0588 −0.0585 −0.0581

5 −1.0000 −0.0552 −0.0586 −0.0583 −0.0579

6 0.9969 −0.0552 −0.0867 −0.0658 −0.0563

The estimates of parameter d have the same value of -1 for joint distribution of the
Nikkei index and institution i (i = 1, 2, 3, 4, 5). Although the sixth institution has a quite
different value of d, the CoVaR at any τ∗ level has similar value to each other CoVaR.
From Tables 2 and 3, we can see that the values of CoVaR are very stable for different
financial institutions. This leads us to consider modeling the systemic risk by the measure
CoVaR. In addition, from the property of the Nikkei index, all six institutions have the
same weights in the Nikkei index. Thus, the new copula (3.1), which has more similar
CoVaR, is more natural as a tool to evaluate CoVaR.

5. Optimal portfolio for the GPIF. In this section, we give our consideration to
the optimal portfolio for the GPIF. Assets of the GPIF are composed of Domestic Bond
(DB), Domestic Equity (DE), Foreign Bond (FB), Foreign Equity (FE) and Cash (C). The
data of log returns are from December 31, 1970 to December 31, 2013. The sample size is
516.

First, we show the joint distribution of the GPIF and each asset by scatter plots in
Figure 9. We suppose the portfolio of the GPIF is (60%, 12%, 11%, 12%, 5%) as what it
was before the change of portfolio.

(a) Scatter plot of returns of the GPIF and DB. (b) Scatter plot of returns of the GPIF and DE.
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(c) Scatter plot of returns of the GPIF and FB. (d) Scatter plot of returns of the GPIF and FE.

(e) Scatter plot of returns of the GPIF and C.

Fig 9: Scatter plots between return of the GPIF and each asset.

Interestingly, it seems that applying other distributions to the marginal distributions in
copula function is more appropriate than normal distributions, although we found that the
normal marginals are sufficient to model the log returns of financial institution’s stocks.
Let t(ν, µ, σ) denote Student’s t-distribution with ν degrees of freedom, shift µ and scale
σ, and U(a, b) denote uniform distribution whose support is [a, b].

We used Gumbel-hougaard copula to model the joint distribution. In addition to pa-
rameter d in Gumbel-hougaard copula, we also report the estimated marginal distributions
of each joint distribution, 5% VaR and 5%–1%, 5%–5% and 5%–10% CoVaR of the GPIF
against each asset in Table 4. We omit CoVaR from 5%–1% CoVaR etc. in Tables 4 and 5
to save the space.
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Table 4
the GPIF’s VaR and CoVaR according to the Gumbel-Hougaard copula.

Asset d GPIF Asset 5% VaR 5%–1% 5%–5% 5%–10%

DB 1.425 t(5.857, 0.005, 0.011) t(3.518, 0.005, 0.010) −0.0181 −0.0294 −0.0251 −0.0228

DE 1.984 t(6.968, 0.005, 0.011) t(6.126, 0.007, 0.045) −0.0181 −0.0376 −0.0292 −0.0251

FB 1.592 t(5.215, 0.005, 0.011) t(4.486, 0.005, 0.025) −0.0181 −0.0343 −0.0279 −0.0246

FE 2.270 t(5.983, 0.005, 0.012) t(5.939, 0.008, 0.045) −0.0181 −0.0431 −0.0318 −0.0265

C 1.119 t(5.190, 0.007, 0.011) U(0.000, 0.011) −0.0181 −0.0195 −0.0183 −0.0176

Next, we use new asymmetric copula (3.1) to model the joint returns of the GPIF and
each asset. We report the estimated parameter d in Gumbel-hougaard copula, marginal
distributions of each joint distribution, 5% VaR and 5%–1%, 5%–5% and 5%–10% CoVaR
of the GPIF against each asset in Table 5.

Table 5
the GPIF’s VaR and CoVaR according to new copula.

Asset d GPIF Asset 5% VaR 5%–1% 5%–5% 5%–10%

DB 0.860 t(5.778, 0.005, 0.012) t(4.199, 0.005, 0.010) −0.0181 −0.0266 −0.0234 −0.0206

DE −1.000 t(5.742, 0.005, 0.011) t(6.437, 0.009, 0.044) −0.0181 −0.0183 −0.0181 −0.0179

FB −1.000 t(5.717, 0.005, 0.011) t(5.325, 0.005, 0.025) −0.0181 −0.0183 −0.0181 −0.0179

FE −1.000 t(5.967, 0.005, 0.011) t(5.490, 0.012, 0.042) −0.0181 −0.0185 −0.0183 −0.0181

C 0.215 t(0.915, 0.005, 0.010) U(−0.013, 0.011) −0.0181 −0.0709 −0.0705 −0.0701

Suppose the log returns of DB, DE, FB and FE are denoted by X1, X2, X3 and X4,
respectively. Let the superscript T denote the transpose of the corresponding vector in the
following. According to the new basic portfolio asset allocation of the GPIF, we define the
optimal portfolio ωopt for the weights ω = (ω1, ω2, ω3, ω4)

T ∈ [0, 1]4 of X1, X2, X3 and X4

as follows:
ωopt = arg min

ω∈[0,1]4
−ωTCoVaR(τ, τ∗),

where CoVaR(τ, τ∗) = (CoVaR1(τ, τ
∗),CoVaR2(τ, τ

∗),CoVaR3(τ, τ
∗),CoVaR4(τ, τ

∗))T and∑4
i=1 ωi = 1. This optimization problem is well-defined but not trivial since CoVaR(τ, τ∗)

is not a linear or simple function of ω.
Let us first consider the risk measure −ωTCoVaR(τ, τ∗) for the new basic portfolio

(35%, 25%, 15%, 25%) of the GPIF. Under this portfolio, we summarized the estimates of
parameter d in copula and the marginal distributions of each joint distribution in Table 6.
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Table 6
Copula parameter and marginal distributions of the new basic portfolio.

Asset d GPIF Asset

DB 0.000 t(5.142, 0.007, 0.020) t(10.089, 0.005, 0.010)

DE 1.000 t(6.623, 0.007, 0.020) t(7.793, 0.012, 0.043)

FB 0.890 t(5.088, 0.007, 0.020) t(5.333, 0.006, 0.025)

FE 1.000 t(7.171, 0.008, 0.018) t(7.408, 0.017, 0.040)

Next, we summarized the average conditional quantile ωTCoVaR(τ, τ∗) of the new basic
portfolio at different quantile levels (τ, τ∗) in Table 7.

Table 7
Average conditional quantile ωTCoVaR(τ, τ∗) (×10−2) at different quantile levels (τ, τ∗).

HHHHHτ∗
τ

1% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

1% −7.206 −5.023 −4.064 −3.450 −2.962 −2.527 −2.110 −1.677 −1.186 −0.536 0.734

5% −5.858 −3.805 −2.901 −2.321 −1.859 −1.450 −1.060 −0.666 −0.246 0.221 0.734

10% −5.304 −3.294 −2.414 −1.852 −1.408 −1.021 −0.662 −0.315 0.031 0.381 0.734

15% −5.025 −3.024 −2.157 −1.608 −1.181 −0.813 −0.480 −0.165 0.139 0.438 0.734

20% −4.876 −2.864 −2.003 −1.464 −1.049 −0.696 −0.380 −0.087 0.194 0.466 0.734

25% −4.807 −2.768 −1.908 −1.375 −0.968 −0.626 −0.321 −0.041 0.225 0.482 0.734

30% −4.789 −2.714 −1.851 −1.320 −0.918 −0.582 −0.285 −0.013 0.244 0.491 0.734

35% −4.803 −2.689 −1.819 −1.288 −0.888 −0.556 −0.263 0.004 0.255 0.497 0.734

40% −4.838 −2.684 −1.804 −1.271 −0.872 −0.541 −0.251 0.014 0.262 0.500 0.734

45% −4.885 −2.694 −1.803 −1.266 −0.865 −0.534 −0.245 0.019 0.265 0.502 0.734

50% −4.938 −2.714 −1.811 −1.269 −0.865 −0.533 −0.243 0.020 0.266 0.503 0.734

The tail probability pair (τ, τ∗) for a loss of 5.59% in asset return is plotted in Figure
10. 5.59% loss in asset return of the GPIF has happened in the second quarter in 2015.

Fig 10: Tail probability pair (τ, τ∗) for a loss of 5.59% in asset return.
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Finally, we used the new copula (3.1) to find the optimal portfolio of the GPIF. As prepa-
ration to avoid heavy computation, we directly estimated parameters µ and σ from each
marginal samples since their estimates are quite accurate even if we do not estimate them
simultaneously with other parameters. After estimating parameters d and ν for each port-
folio, we obtained the following optimal portfolio ωopt from the point of view of CoVaR(τ ,
0.05) at different quantile level τ in Table 8.

Table 8
the optimal portfolio weights and the corresponding risk at different τ∗.

τ∗ τ ω1 ω2 ω3 ω4 Risk

0.05 0.01 95.31% 1.35% 1.96% 1.37% 0.0256

0.05 0.05 95.00% 0.00% 3.01% 1.98% 0.0160

0.05 0.10 92.39% 0.59% 4.77% 2.24% 0.0115

0.05 0.15 90.52% 2.53% 3.59% 3.36% 0.0088

0.05 0.20 84.10% 3.78% 7.36% 4.75% 0.0072

0.05 0.25 87.00% 7.54% 2.64% 2.82% 0.0055

0.05 0.30 88.45% 4.23% 7.13% 0.18% 0.0029

0.05 0.35 89.68% 3.17% 3.27% 3.88% 0.0013

0.05 0.40 86.38% 5.95% 4.54% 3.14% −0.0006

0.05 0.45 86.21% 3.74% 9.07% 0.98% −0.0029

0.05 0.49 14.52% 24.24% 0.05% 61.19% −0.0065

Comparing with Table 7, we find that the optimal portfolio of the GPIF improves the
risk more at lower quantile than that at higher quantile. We have to put more weight on
Domestic Bond if we fear a big failure in the GPIF although the way to put weights is not
so trivial. We can analyze the optimal portfolio in more detail if we have more data and
more concrete perspective on the risk management of the GPIF.
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