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VARIANCE STABILIZING PROPERTIES OF BOX-COX
TRANSFORMATION FOR DEPENDENT OBSERVATIONS

By YAN LIU

Waseda University

Box-Cox transformation is one of the most famous transforma-
tions to stabilize the variance of estimators. In this note, we focus
on the dependent random variables with the multivariate Tweedie
distributions. Under a new condition between dispersion parameters,
we derive the formula for power parameter in the Box-Cox transfor-
mation for variance stabilization. The result shows that even in the
dependent case, the same formula as that for identically and inde-
pendent distributed random variables holds.

1. Introduction. Use of transformation in statistics has been considered for a long time.
The main purposes for the use of transformation are summarized as: to make data have (a)
the invariant variance under the changes of the mean after transformation; (b) the normally
distributed variate after transformation; (c) the efficiency of the arithmetic average for any
particular group of measurements after transformation; (d) linear and additive real effects
after transformation, in the primitive study by Bartlett (1947). With these motivations, Box
and Cox (1964) proposed a parametric family of transformations from the raw data X to the
transformed data X(λ) by

(1.1) X(λ) =

{
Xλ−1

λ , if λ ̸= 0,

logX, if λ = 0.

The transformation is well known as the Box-Cox transformation. It is used in various fields
such as medical science, epidemiology and environmentology because of its simplicity and
efficiency.

There are two ways to apply the transformation. One is to apply the transformation to the
parameter and the other is to apply to the raw data. The first approach began with Fisher’s
z-transformation for population correlation coefficient ρ in Fisher (1921). The phenomenon
is well explained by the normal approximation in Konishi (1978). The general procedure for
finding normalizing transformations for parameter is given in Konishi (1981). Taniguchi and
Puri (1995) developed the higher order asymptotic theory for transformations of the maximum
likelihood estimators in general statistical models.

The other way is directly applying the transformation to the raw data. The analyses can
be further divided into two categories. One method to analyze the use of transformation is to
assume the normality after transformation. The idea that the transformed observations are
distributed as an appropriate linear model with normality and the parameter λ is estimated
by maximum likelihood estimator originated from Box and Cox (1964). The assumption of
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normality was removed in Bickel and Doksum (1981). Recently, Hosoya and Terasaka (2009)
assumed the transformed observations are distributed as a linear stationary process and they
provided the whole picture of the inference by the Whittle estimator. This idea, however,
is often associated with the issue that the transformed observations are not distributed as
they are assumed although the estimator of the parameters in the model is assumed to be
maximum likelihood estimator.

The second method to consider the problem is to assume the observations come from the
Tweedie class in the exponential dispersion models. Tweedie (1947) introduced a new class
with the relationship between the variance and the mean of the observations. This class
matches the original idea for data transformation in Bartlett (1947). Jørgensen (1987) intro-
duced exponential dispersion models and indicated that the Tweedie class in the exponential
dispersion models has the property of power variance functions. Nishii (1991) examined the
Tweedie class and the power transformation by the asymptotic expansion. Especially, he pro-
vided the exact power of the Box-Cox transformation corresponding to the Tweedie class.
The approach, however, only deals with the transformation of the raw data in the i.i.d. case.
In this note, we consider the dependent case for multivariate Tweedie distributions, which
were introduced in Furman and Landsman (2010). In this note, we focus on the dependent
random variables. We adopt the multivariate Tweedie class to derive the exact value of the
power parameter for transformation. Surprisingly, not only when the samples are i.i.d., even
in the case of dependent random variables, the formula given in Nishii (1991) also holds.

This note is organized as follows. In Section 2, we review the concept of variance stabilization
and give the sufficient condition of variance stabilization of the power parameter in the Box-
Cox transformation. In Section 3, we provide the definition of the multivariate dispersion
models and their fundamental properties. We will present our main result on the optimal power
parameter of variance stabilization in the Box-Cox transformation for dependent random
variables in Section 4.

The notations and symbols are listed in the following: R denotes the set of all real numbers;
∂i denotes the derivative respective to the ith element of θ, i.e., ∂/∂θi; cum(m)(X) denotes the
mth cumulant of X; →p and →d denote the convergence in probability and the convergence
in law, respectively.

2. Variance stabilization. In this section, we derive the condition of the power param-
eter in the Box-Cox transformation for variance stabilization. Let X = (X1, . . . , Xn) be a
collection of m-dimensional random variables and the parameter θ included in the model sat-
isfy θ ∈ Θ ⊂ Rp, where Θ is a closed subset. As a general setting, we suppose the parameter
also satisfies the equation

(2.1) Eψn(X, θ) = 0,

and for simplicity, we write ψ(θ) ≡ ψn(X, θ). Generally, the scalar parameter ρ of interest is
a function of θ, i.e.,

ρ = g(θ).

Suppose we estimate the parameter θ by solving (2.1), that is,

ψ(θ̂n) = 0.
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If the equation ψ satisfies the regularity conditions, then the estimate g(θ̂n) is a consistent
estimator of ρ and the distribution of g(θ̂n) is asymptotically normal. In this note, we consider
the transformation T of g(θ̂n) and give the sufficient condition for the transformation to be
variance stabilizing one.

Definition 2.1. A transformation T is called a variance stabilizing transformation if the
asymptotic variance of T (g(θ̂n)) is independent of θ.

To be more concise, we suppose the estimation function, considerably general enough to
contain the non-i.i.d. case, can be approximated by the log-likelihood function as

ψi = n−1/2∂iln(θ),

ψij = n−1/2(∂i∂jln(θ)− E∂i∂jln(θ)),

ψijk = n−1/2(∂i∂j∂kln(θ)− E∂i∂j∂kln(θ)),

where i, j, k ∈ {1, 2, . . . , p}, ln(θ) = log pn(X; θ). Here, we omit the terms of lower order.

Assumption 2.2. Suppose the asymptotic moments of ψi, ψij and ψijk are given as

Eψiψj = Σij +O(n−1),

Eψiψjk = Jijk +O(n−1),

Eψiψjψk =
1√
n
Kijk +O(n−3/2)

and Jth order (J ≥ 3) cumulants of ψi, ψij and ψijk are all O(n−J/2+1).

Under regularity conditions, θ̂n is asymptotically normal, that is,

√
n(θ̂n − θ) →d N (0,Σ).

As a direct result, √
n(g(θ̂n)− ρ) →d N (0,Σ∗),

where

Σ∗ =
∂g(θ)

∂θT
Σ
∂g(θ)

∂θ
.

Proposition 2.3 (Taniguchi and Puri (1995)). If T satisfies the differential equations

T ′′

T ′ = (Σ∗gi)
−1{gjgkΣjj′Σkk′(Kj′k′i + Jj′k′i + Jk′j′i)/2− gii′gj′Σ

i′j′},

then T is the asymptotic variance stabilizing transformation.

This result is direct and straightforward. The proof can be found in Taniguchi and Kakizawa
(2000). Among the most popular transformations, we focus on the Box-Cox transformation.
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Suppose we apply the Box-Cox transformation to the scalar parameter of interest ρ. That is,
from the definition (4.1), the parameter ρ is transformed by

(2.2) ρ(λ) =

{
ρλ−1
ρ , if λ ̸= 0,

log ρ, if λ = 0.

As for the asymptotic variance stabilizing transformation, we obtain the following result.

Corollary 2.4. Suppose the Box-Cox transformation of the parameter of interest ρ is
defined by (2.2). Then the asymptotic variance-stabilizing transformation is achieved when λ
satisfies

λ = 1 + ρ(Σ∗gi)
−1{gjgkΣjj′Σkk′(Kj′k′i + Jj′k′i + Jk′j′i)/2− gii′gj′Σ

i′j′}

for i = 1, . . . , p.

This is a direct result of Proposition 2.3. When the power parameter λ of the Box-Cox
transformation exists, we call λ the optimal power parameter for variance stabilization.

3. Multivariate Tweedie distributions. To illustrate the variance stabilizing proper-
ties of Box-Cox transformation on random variables, the most convenient class is considered
as the class of Tweedie distributions. The class is contained in the class of exponential disper-
sion models. For i.i.d. random variables, the probability measures of exponential dispersion
models are defined by

dPθ = exp(θx−∆κ(θ))ν(dx),

where ν is a positive non-degenerate measure on R and the cumulant function κ(θ) =
log

∫
R exp(θx)ν(dx) with the parameter space

Θ = {θ ∈ R;
∫
R
exp(θx)ν(dx) <∞} ̸= ∅.

Denote random variable X in exponential dispersion models by X ∼ ED(θ,∆). The most at-
tractive properties of the class of distributions is that it contains the power variance functions

(3.1) V (µ) = µp.

The implicit relation between the mean and the variance of random variables to be transform
is considered as early as in Bartlett (1947). Solving the differential equation with the relation
(3.1), we have

(3.2) κ(θ) =


eθ, p = 1,

− log(−θ), p = 2,
α−1
α

(
θ

α−1

)α
, p ̸= 1, 2.

Exponential dispersion models with κ(θ) defined in (3.2) are univariate Tweedie distributions.
Denote random variable X distributed as univariate Tweedie distributions by X ∼ T(p, θ,∆).
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As shown in Jørgensen (1987), an exponential dispersion model is characterized by its variance
functions among the class of all exponential dispersion models. The property guarantees the
uniqueness of univariate Tweedie distributions with different parameters.

The drawback of univariate Tweedie distributions is that they only treat i.i.d. random
variables. To consider the transformation of dependent random variables, we consider the
multivariate Tweedie distributions. Actually, the generalization of univariate Tweedie distri-
butions to multivariate ones has been considered for a long time. However, the main issue of
the generalization is that the new family is not as rich as the univariate Tweedie distribu-
tions. These difficult things are depicted very well by the comment by Letac, which is cited
in Jørgensen (2013). We recited it again here:

While the names of distributions in R are generally unambiguous, at the contrary in the jungle
of distributions in Rk almost nothing is codified outside of the Wishart and Gaussian cases. The
scenario is usually as follows: choose a one-dimensional thingy type (quite often an exponential
dispersion model, namely a natural exponential family and all its real power of convolution) such
as the gamma or negative binomial; then any law in Rk whose margins are of thingy type are said
to be a multidimensional thingy. Although the study of all distributions with given marginals are
rather in the non-parametric domain of study, actually each author who isolates some parametric
family will declare that he or she has THE multidimensional thingy family.

This is why it is better to consider a class of multivariate exponential dispersion models
which may contain ARMA models. The multivariate distribution of random vector X can be
constructed in the following way, which is proposed in Furman and Landsman (2010).

Theorem 3.1 (Furman and Landsman (2010)). Suppose the matrix A is defined by

A =


β1 1 0 0 · · · 0
β2 0 1 0 · · · 0
β3 0 0 1 · · · 0
...

...
...

...
. . . 0

βn 0 0 0 · · · 1

 ,

where βj = θ0/θj. Let X = AZ and Z be an (n+1)-variate random vector with mutually in-
dependent additive Tweedie margins Zi ∼ T(p, θi,∆i), i = 0, 1, . . . , n. Then the jth univariate
margin of X is

(i) in the case of p = 1 and θj ≡ θ for all j ∈ {0, 1, 2, . . . , n},

Xj ∼ T(1, θ,∆0 +∆j),

(ii) in the other cases,

Xj ∼

{
T(2, θj ,∆0 +∆j), p = 2,

T(p, θj ,∆0β
α
j +∆j), p ̸= 1, 2,

where α = (p− 2)/(p− 1).

Remark 3.2. In Jørgensen and Song (1998), it is shown that a class of stationary infinite-
order moving average processes with exponential dispersion model margins can be constructed
by means of the thinning operation. That means that the coefficients of the process are ran-
dom variables. For finite-order ARMA processes, the dependence structures can be considered



68 Y. LIU

as the same of multivariate Tweedie distributions for sufficiently large n in the class defined
in Theorem 3.1. We consider the Box-Cox transformation of multivariate Tweedie distribu-
tions with the dependent care which is broader than the class of stationary processes with
exponential dispersion model.

Denote the mean and the variance of the jth univariate margin Xj by µj and Vj , respec-
tively. The fundamental properties of univariate margin are

µj = βj∆0κ
′(θ0) + ∆jκ

′(θj),(3.3)

Vj = β2j∆0κ
′′(θ0) + ∆jκ

′′(θj),(3.4)

and p(= mi1 +mi2 + · · ·+min)th joint cumulant is

(3.5) cum(mi1
,mi2

,...,min )
(Xi1 , Xi2 , . . . , Xin) =

n∏
k=1

β
mik
ik

∆0κ
(p)(θ0).

4. Power parameter for variance stabilization. In this section, we shall derive the
optimal power parameter λ of the Box-Cox transformation for variance stabilization. To be
concise, we consider the Box-Cox transformation applied to the random vector X distributed
as multivariate Tweedie distribution. The Box-Cox transformation, i.e.,

(4.1) X
(λ)
j =


Xλ

j −1

λ , if λ ̸= 0,

logXj , if λ = 0,

is applied to every marginal random variable Xj for 1 ≤ j ≤ n. To deal with the trans-
formation, we usually consider the case that the dispersion parameter ∆ diverges. For the
multivariate case, we suppose ∆j/∆0 = mj and ∆ = minj∈{1,2,...,n}∆j . As ∆ → ∞, it holds
from (3.3)–(3.5) that

(4.2) V −1/2(X − µ) →d N (0,Σ),

where V 1/2 = diag(V
1/2
1 , V

1/2
2 , · · · , V 1/2

n ) and µ = (µ1, . . . , µn)
T . The asymptotic variance

matrix Σ is given by

Σi,j =

1, if i = j,
βiβjκ

′′(θ0)√
β2
i κ

′′(θ0)+miκ′′(θi)
√

β2
j κ

′′(θ0)+mjκ′′(θj)
, if i ̸= j.

Note that the random vector Z to construct X is the maximum likelihood estimator for its
mean under ∆-asymptotics. With the asymptotics above, we can derive the optimal power of
the Box-Cox transformation for variance stabilization from the results in Section 2.

Theorem 4.1. The power parameter λ of the Box-Cox transformation for variance sta-
bilization is given by

λ =
α

2(α− 1)
,

in both cases of (i) βj = 0, i.e., i.i.d. samples and (ii) βj ̸= 0, i.e., dependent observations.
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Proof. (i) Note that
∆j

−1/2(Xj − µj) →d N (0, κ′′(θj)).

It is easy to see that g(θ) = κ′(θj), K = κ(3)(θj) and J = 0. As a result, we have

λ = 1− κ′(θj)κ
(3)(θj)

(κ′′(θj))2
.

Substitute (3.2) for κ(θj), we have

λ =
α

2(α− 1)
.

(ii) Suppose ∆j/∆0 = mj . From (4.2), we have

∆
−1/2
0 (Xj − µj) →d N (0, Vj),

where

µj = βjκ
′(θ0) +mjκ

′(θj),(4.3)

Vj = β2jκ
′′(θ0) +mjκ

′′(θj).(4.4)

From the asymptotics of Z, it holds that

∆
−1/2
0

(
Z0

Zj

)
→d N

((
κ′(θ0)
κ′(θj)

)
,

(
κ′′(θ0) 0

0 κ′′(θj)

))
.

Since g(θ0, θj) = βjκ
′(θ0) + mjκ

′(θj), K = κ(3)(θj) and J = 0, we find the power
parameter λ have to satisfy

λ =
µj
Vj

{
−βjκ

(3)(θ0)

2κ′′(θ0)

}
,(4.5)

λ =
µj
Vj

{
−mjκ

(3)(θj)

2κ′′(θj)

}
.(4.6)

Note that mj in (4.5) and (4.6) is a ratio parameter between two dispersion parameters
∆0 and ∆j . Two equations (4.5) and (4.6) can hold simultaneously if and only if

(4.7) mj =
βjκ

′′(θj)κ
(3)(θ0)

κ′′(θ0)κ(3)(θj)
.

Under (4.7) and substitute (3.2) for κ(θ0) and κ(θj) in (4.3), (4.4) and λ with βj = θ0/θj ,
we also have

λ =
α

2(α− 1)
.
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161.
Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic theory of statistical inference for time series. New York:

Springer-Verlag.
Taniguchi, M. and Puri, M. L. (1995). Higher order asymptotic theory for normalizing transformations of

maximum likelihood estimators. Annals of the Institute of Statistical Mathematics 47 581–600.
Tweedie, M. (1947). Functions of a statistical variate with given means, with special reference to Laplacian

distributions. In Mathematical Proceedings of the Cambridge Philosophical Society 43 41–49. Cambridge
Univ Press.

Yan Liu
Department of Applied Mathematics
School of Fundamental Science and Engineering
Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555
Japan
E-mail: great-rainbow@ruri.waseda.jp


