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ASYMPTOTICS FOR M-ESTIMATORS IN TIME SERIES

By YAN LIU

Waseda University

It has been a half of a century since Hodges and Lehmann pro-
posed a Lemma on the asymptotic normality for the estimation of lo-
cation in 1963 before Huber, who changed the idea into the concept of
M -estimation. In this paper, we give conditions which guarantee the
asymptotic normality of M -estimator based on the observations from
time series models by minimizing some convex objective functions.
We do not assume the differentiability around the true parameter of
the objective functions. The results are extended to Mm estimates.
Examples with new aspects of the main results are also provided.

1. Introduction. Hodges and Lehmann (1963) proposed a Lemma on the asymptotic
normality for the estimation of location of i.i.d. samples. Huber (1964) generalized the idea
into M -estimation concept and investigated the robustness of the estimators.

In time series settings, the second order stationarity is usually considered. Under the con-
ditions, the process {Xt} has its own spectral density f(λ) in the frequency domain. The
parameter estimation is based on the periodogram

(1.1) In(λ) =
1

2πn

{ n∑
t=1

Xte
itλ
}{ n∑

t=1

Xte
itλ
}∗

,

which is defined on the observed stretch {X1, . . . , Xn}. Then the Whittle estimator is defined
as the minimizer of

(1.2) D(fθ, In) =

∫ π

−π
[log det{fθ(λ)}] + tr{In(λ)fθ(λ)−1}dλ.

The asymptotic normality of the Whittle estimator under regular conditions was shown in
Hosoya and Taniguchi (1982).

In this paper, we suppose the process{Xt} has a unique one-sided autoregressive represen-
tation in time domain as

(1.3)
∞∑
j=0

bj(Xt−j − µ) = ϵt,

with b0 = 1. The process may be second order stationarity, with some “nice” structures for
dependent data, such as ergodicity and mixing conditions. For example, the asymptotics of
the process under mixing conditions is well investigated in Ibragimov and Linnik (1971).

Even if the the process is second order stationary nonlinear, the process can be decomposed
into a linear part and a deterministic part (Wold’s decomposition), and in turn it has AR(∞)
representation since the process is invertible (See Brockwell and Davis (1991), p.90).
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For M -estimation, the problem may be generalized as follows. We assume that the AR(∞)
representation of the model is characterized by a finite dimensional vector θ = (θ1, η). That
is to say, the model is defined by

(1.4)
∞∑
j=0

bj(η)Xt−j = ϵt,

where b0 = 1 and {ϵt} is i.i.d. (0, θ1). The parameter θ1 denotes the scale parameter of the
model, and the remaining parameter (θ2, . . . , θm) is denoted by η. The true parameter is
represented by θ0.

Define the residual process et(η) and its corresponding form in the following way:

et(η) =

t−1∑
j=0

bj(η)Xt−j , rt(θ) = θ
−1/2
1 et(η),(1.5)

ϵt(η) =
∞∑
j=0

bj(η)Xt−j , vt(θ) = θ
−1/2
1 ϵt(η).(1.6)

The approximate maximum likelihood estimator is equivalent to finding the solution of

n∑
t=2

rt(θ)ṙt(θ)− c(θ) = 0,

which is considered in Beran (1994). They extend the estimator to a class of Z-estimators and
investigate the robustness under Gaussian long-memory situation.

We look into the properties of M -estimators in both non-differentiable and differentiable
cases of the objective functions. Even we showed the asymptotic normality of M -estimator
with non-differentiable objective function under some regular conditions, the asymptotic vari-
ance matrix of the estimator is not explicitly obtained. For this reason, we give the asymptotic
variance matrix of the estimator under the differentiable conditions. The objective function
is considered to be convex, so the corresponding M -estimator includes LAD estimators (see
Niemiro (1992)). We also extend the result to Mm estimator since the class is much richer.
The class includes Oja’s median and even Hodges-Lehmann’s estimators of location (see Bose
(1998)). The proof is similar to the method for U statistics in depend case, which is in order
examined by Hoeffding (1948), Sen (1972), Yoshihara (1976) and Denker and Keller (1983).

The paper is organized as follows. In section 2, we review the sufficient conditions for
asymptotic normality of M -estimators. Without the condition of differentiability for the con-
vex objective function, we derive asymptotic normality of M -estimators in time series settings
under the new class of conditions. Also, the asymptotic result is given in the detailed way if
the objective function is differentiable in Section 4. In section 5, we extend the result to Mm

estimators. Section 6 contains two important cases of the inference in time series analysis as
examples of the main result.

2. Asymptotic Normality of M-estimators. First we revisit the work of Niemiro
(1992) and Hodges and Lehmann (1963) in this section.
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Suppose ϵ, ϵ1, . . . , ϵn are i.i.d. random variables. Let ρ(θ, ϵ) be a real function defined for
θ ∈ Rm and g(θ, ϵ) be a subgradient of ρ(θ, ϵ). Define

(2.1) Q(θ) = Eρ(θ, ϵ).

The empirical analog of Q(θ) is defined by

(2.2) Qn(θ) =
1

n

n∑
i=1

ρ(θ, ϵi).

Denote the corresponding score function ξn(θ). Usually, ξn(θ) is considered as ∇Qn(θ), where
∇ is an operation which means the differentiation with respect to θ. Set the ith element θ̂ni
of minimizer θ̂n satisfying

(2.3) θ̂ni = αθ∗ni + (1− α)θ∗∗ni

for any 0 ≤ α ≤ 1, where

θ∗ni = sup{r : ξni(r) ≥ 0},
θ∗∗ni = inf{r : ξni(r) ≤ 0}.

Assumption 2.1 (Niemiro (1992)).

(i) ρ(θ, ϵ) is convex with respect to θ for each fixed ϵ.
(ii) Q(θ) is well defined, that is, the expectation exists and is finite for all θ.
(iii) θ0 satisfying Q(θ0) = minθ Q(θ) exists and is unique.
(iv) E|g(θ, ϵ)|2 < ∞ for each θ in a neighborhood of θ0.
(v) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

Assumption 2.2 (Hodges and Lehmann (1963), Inagaki and Kondo (1980)).

(i) ξn(θ) is a non-decreasing function of every element of θ.
(ii) For any vector valued u,

√
n(ξn(θ

0 + u/
√
n)− ξn(θ

0))
P−→ H ′u,

where H is a positive definite matrix.

(iii)
√
nξn(θ

0)
L−→ N (0, V ).

Lemma 2.3. Under each of Assumption 2.1 or Assumption 2.2, Then

(2.4)
√
n(θ̂n − θ0)

L−→ N (0,H−1V H−1),

where H = ∇2Q(θ0) and V = Var g(θ0).

Proposition 2.4. If ρ(θ, ϵ) is differentiable with respect to θ in a neighborhood of θ0, then
Assumption 2.1 implies Assumption 2.2.
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Proof. From Assumption 2.1.(i) and (ii), we see ξn(θ) is a non-decreasing function of
every element of θ. Next, according to Niemiro’s proof, we see for each θ in a neighborhood
of θ0,

(2.5) Qn(θ +
u√
n
)−Qn(θ)−

u′√
n
∇Qn(θ)−Q(

u√
n
, θ)

P−→ 0.

Differentiate the equation with respect to θ above and substitute θ = θ0,

ξn(θ
0 +

u√
n
)− ξn(θ

0)− u′√
n
∇2Qn(θ

0)
P−→ 0.

From Assumption 2.1.(v),

∇2Qn(θ
0)

P−→ ∇2Q(θ0),

and by Theorem 4.1 of Billingsley (1968), we obtain the desirable result:

√
n(ξn(θ

0 + u/
√
n)− ξn(θ

0))
P−→ ∇2Q(θ0)′u.

Under Assumption 2.1.(iv), we have the last result,

√
nξn(θ

0)
L−→ N (0, V ).

Remark 2.5. We mainly show the result by (2.5) in the subsequent section. It is sufficient
for the asymptotics. (See Niemiro (1992).)

3. Estimation of Parameters in Linear Time Series Models. For time series model,

we consider ρ(θ
−1/2
1 , et(η)), which sometimes is written as ρ(θ) for short. In this section, we

only assume ρ(θ) is convex with respect to each parameter. Generally, consider θ = (θ1, η) in
a compact set Θ ⊂ Rm, where η = (θ2, . . . , θm). For simplicity, we write

(3.1) Q(θ) = Eρ(θ
−1/2
1 , et(η)).

The true value of θ, represented by θ0 is defined by

(3.2) Q(θ0) = min
θ∈Θ

Q(θ).

The sample version corresponding to the objective function is

(3.3) Qn(θ) =
1

n

n∑
t=1

ρ(θ
−1/2
1 , et(η)),

and

(3.4) θ̂n = argmin
θ∈Θ

Qn(θ).
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Assumption 3.1.

(i) ρ(θ) is convex with respect to θ.
(ii) Q(θ) is well defined.
(iii) θ0 satisfying (3.1) exists and is unique.

Since ρ(θ) is a convex function, there exists a subgradient of ρ(θ), which is denoted by g(θ)
satisfying

(3.5) ρ(α) + (β − α)′g(α) ≤ ρ(β)

hold for all α, β ∈ Rd. Without loss of generality, we consider the case θ0 = 0 and Q(0) = 0.
Then

α′g(0) ≤ ρ(α)− ρ(0) ≤ α′g(α),(3.6)

0 ≤ ρ(α)− ρ(0)− α′g(0) ≤ α′(g(α)− g(0)).(3.7)

For α = (α1, α2), we use the following symbols for the simplicity of the notation:

ρ(
α√
n
)t := ρ((θ01 +

α1√
n
)−1/2, et(η

0 +
α2√
n
)),

ρ(0)t := ρ((θ01)
−1/2, et(η

0)) = ρ((θ01)
−1/2, ϵ).

g(·)t is also defined in the same way. At neighborhood of θ0, we have for each t,

(3.8) 0 ≤ ρ(
α√
n
)t − ρ(0)t −

α′
√
n
g(0)t ≤

α′
√
n
(g(

α√
n
)t − g(0)t).

Assumption 3.2.

(i) For all diagonal elements (i, i),

∞∑
k=1

E|(g( α√
n
)1 − g(0)1)i(g(

α√
n
)k − g(0)k)i| < ∞.

(ii) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

Remark 3.3. Assumption 3.2.(i) is a condition to control the correlation of the score.

Theorem 3.4. Let θ̂n be defined in (3.4) under Assumptions 3.1 and 3.2. Then we obtain

(i) θ̂n converges to the true value θ0 in probability as n → ∞.
(ii)

√
n(θ̂n−θ0) have a joint asymptotic normal distribution whose mean is 0 and the asymp-

totic covariance matrix is give by H−1V H−1, where

H = ∇2Q(θ0)

V = Var g(θ0).
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Proof. First, we show (2.5) holds in this case. For fixed α, define Ynt as

Ynt = ρ(
α√
n
)t − ρ(0)t −

α′
√
n
g(0)t.

Then

EYnt = Q(
α√
n
),

n∑
t=1

Ynt =

n∑
t=1

ρ(
α√
n
)t − ρ(0)t −

α′
√
n
g(0)t.

For simplicity, let

Gnt =
α′
√
n
(g(

α√
n
)t − g(0)t).

Thus, we have

Var
∑

Ynt ≤ E(
∑

Ynt)
2

≤ nEG2
n1 + 2

n−1∑
k=1

(n− k)EGn1Gn,n+1−k

≤ E{α′(g(
α√
n
)1 − g(0)1)}2

+2

n−1∑
k=1

n− k

n
Eα′(g(

α√
n
)1 − g(0)1)(g(

α√
n
)n+1−k − g(0)n+1−k)

′α

The first term in the right hand side can be approximated by

(3.9) E{α′(g(
α√
n
)1 − g(0)1)}2 =

1

n
E(α′∇g(0)1α)

2 + o(
1

n2
),

and the second term can be approximated by

(3.10) 2
n− k

n2

n−1∑
k=1

E(α′∇g(0)1∇g(0)′n+1−kα)
2 + o(

1

n2
).

These two terms in turn converge to 0 as n → ∞. Therefore, we have

1

n

n∑
t=1

Ynt − EYnt
P−→ 0.

Asymptotic normality of n−1/2
∑

g(θ0)t follows from the classic central limit theorem under
the Assumption 3.2.(ii).

Remark 3.5. Note that Ynt is not independent, which is different from Niemiro (1992).
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4. Differentiable Objective Functions. When the objective function satisfy the dif-
ferentiable conditions, the result can be further shown easily and concretely by the martingale
difference central limit theorem. In this section, we use Hodges-Lehmann’s criteria to show

the central limit theorem for θn. Consider ρ(θ
−1/2
1 , et(η)) ≡ ρ(x, y). For simplicity of notation,

we write ρ(θ)t = ρ(θ
−1/2
1 , et(η)) where θ = (θ1, η) ∈ Θ ⊂ Rm: compact if it is not necessary to

think θ1 and η in a separate way. Here θ1 is a scale parameter and η = (θ2, . . . , θm).
The objective function is denoted by

(4.1) Q(θ) = Eρ(θ
−1/2
1 , et(η)).

The true value of θ, represented by θ0 is defined by

(4.2) Q(θ0) = min
θ∈Θ

Q(θ).

On account of the simplicity of notation, we use σ and η0 for the true value of θ1 and η
separately. The sample version corresponding to the objective function is

(4.3) Qn(θ) =
1

n

n∑
t=1

ρ(θ
−1/2
1 , et(η)),

and

(4.4) θ̂n = argmin
θ∈Θ

Qn(θ).

Let ρx, ρy be the partial derivative of ρ(x, y) w.r.t x and y, Ft be the σ-field generated by

the set of random variables {Xn; n ≤ t}. As seen in the definition of ρ(θ
−1/2
1 , et(η)), it is

Ft-measurable. Also, by (1.5), we can see that ∂
∂ηet(η) is Ft−1-measurable.

Assumption 4.1.

(i) Let ρ(θ) be a measurable convex function with respect to θ from R× Rm−1 to R.
(ii) Q(θ) is well defined.
(iii) θ0 satisfying (4.2) exists and is unique.
(iv) Eρx(θ

0) = 0 and Eρy(θ
0) = 0.

(v) Eρ(θ0)2 < ∞, Eρy(θ
0)2 < ∞, E( ∂2

∂η∂η′ et(η)|θ=θ0)
′( ∂2

∂η∂η′ et(η)|θ=θ0) and

E( ∂
∂ηet(η)

∂
∂η′ et(η))

′( ∂
∂ηet(η)

∂
∂η′ et(η)) exist.

(vi) Define ρ̃(θ0)t ≡ ρy(θ
0)t

∂
∂ηet(η)

∣∣∣
θ=θ0

. To show central limit theorem for the martingale

difference sequence {ρ̃(θ0)t,Ft}, we suppose the Lindeberg condition, by Euclidean norm
∥ · ∥ and indicator function 1( · ),

1

n

n∑
t=1

E(∥ρ̃(θ0)t∥21(∥ρ̃(θ0)t∥ ≥ ϵ)) → 0,(4.5)

1

n

n∑
t=1

E(ρ̃(θ0)tρ̃(θ0)
′
t

∣∣∣Ft−1)
P−→ S,(4.6)

where
S = Eρ̃(θ0)tρ̃(θ0)

′
t.
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Remark 4.2. As a result of Assumption 4.1.(i), ρx(θ) and ρy(θ) are also functions from
R× Rm−1 to R.

Remark 4.3. In the L2 theory, set ρ : R× Rm−1 7→ R as

(4.7) ρ(x, y) = (xy)2 − 2 log x.

In this case, θ1 = σ2, that is θ−1/2 = σ−1. We obtain the same result from the following
asymptotics as that for the Whittle estimator in the second-order stationary case in the
frequency domain.

Remark 4.4. θ1 can be a parameter for different scales. As an example, let θ1 be defined
as follows:

(4.8) ρ(x, y) = (xy)k − k

k − 2
xk−2.

Then it is easy to see that θ01 is Eϵkt . Note that in most case in time series analysis, Eϵt is
assumed to be 0 or the symmetricity of ϵt is assumed. As an alternative, θ1 can be defined by

(4.9) ρ(x, y) = (x|y|)k − k

k − 2
xk−2,

then θ01 is E|ϵt|k.

Remark 4.5. Since the random structure of ρx(θ) is the same as ρ(θ), it is sufficient to
only suppose ρ(θ0) < ∞.

From the definition,

(4.10) ξn(θ) =
1

n

n∑
t=1

(−1

2
θ
−3/2
1 ρx(θ), ρy(θ)

∂

∂η′
et(η))

′.

Theorem 4.6. Let θ̂n be defined in (4.4) under Assumption 4.1. Then we obtain

(i) θ̂n converges to the true value θ0 in probability as n → ∞.
(ii)

√
n(θ̂n−θ0) have a joint asymptotic normal distribution whose mean is 0 and the asymp-

totic covariance matrix is give by H−1V H−1, where

H =

(
1
2σ

−3Eρxx(θ
0) 0

0 Eρyy(θ
0)E ∂

∂ηet(η)
∂
∂η′ et(η)

∣∣∣
θ=θ0

)
,

V =

(
Eρx(θ

0)2 0

0 Eρy(θ
0)2E ∂

∂ηet(η)
∂
∂η′ et(η)

∣∣∣
θ=θ0

.

)
.

In the case of Gaussian process with (4.7), the covariance matrix is

V = 2D−1,

where

Dij = (2π)−1
{∫ π

−π

∂

∂θi
log f(λ)

∂

∂θj
log f(λ) dx

}∣∣∣
θ=θ0

,

and f(λ) is the spectral density of the model.
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Proof. We will show Assumption 4.1 satisfies Assumption 2.2.

(i) If ρ is convex, then its derivative g is a non-decreasing function in each argument.
(ii) Stochastic expansion of ξn(θ) yields

√
n(ξn(θ

0 + u/
√
n)− ξn(θ

0)) =
1

n

n∑
t=1

∇ξn(θ
0)′u+ op(n

−3/2).

The (1,1)-element of ∇ξn(θ) is

∇ξn(θ
0)11 =

1

n

n∑
t=1

(−1

2
σ−3/2ρxx(θ

0)t +
3

4
σ−5/2ρx(θ

0)t).

Since Eρx(θ
0) = 0 and ρx(θ

0) is Ft-measurable, {ρx(θ0)}t is i.i.d. sequence with mean 0
and finite variance. Thus

∇ξn(θ
0)11

P−→ −1

2
σ−3/2Eρxx(θ

0),

since
n∑

t=1

3

4
σ−5/2ρx(θ

0)t
P−→ 0.

Similarly, we have (i, j)-element of ∇ξn(θ) (i ≥ 2, j ≥ 2),

∇ξn(θ
0)ij =

1

n

n∑
t=1

ρyy(θ
0)t

∂

∂η
et(η)

∂

∂η′
et(η)

∣∣∣
θ=θ0

+
1

n

n∑
t=1

ρy(θ
0)t

∂2

∂η∂η′
et(η)

∣∣∣
θ=θ0

.

The last term in the right hand side of the equation above forms a martingale since
b0 = 1 implies that ∂

∂ηet(η) and
∂2

∂η∂η′ et(η) is Ft−1-measurable. Noting that

Eρy(θ
0)

∂2

∂η∂η′
et(η)

∣∣∣
θ=θ0

= E(Eρy(θ
0)

∂2

∂η∂η′
et(η)

∣∣∣
θ=θ0

∣∣∣Ft−1)

= E
∂2

∂η∂η′
et(η)

∣∣∣
θ=θ0

Eρy(θ
0) = 0,

under Assumption 4.1.(v), we obtain

∇ξn(θ
0)ij

P−→ Eρyy(θ
0)E

∂

∂η
et(η)

∂

∂η′
et(η)

∣∣∣
θ=θ0

by Chebyshev’s inequality to show the last term converges to 0 in probability.
(iii) Consider

√
nξn(θ

0) = n−1/2
n∑

t=1

(−1

2
σ−3/2ρx(θ

0), ρy(θ
0)

∂

∂η′
et(η)

∣∣∣
θ=θ0

)′.

As seen in (ii), {ξn(θ0),Fn} is a martingale with respect to Fn. Under Assumption
4.1.(vi), we have

√
nξn(θ

0)
L−→ N (0, V ),
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where

V =

(
Eρx(θ

0)2 0

0 Eρy(θ
0)2E ∂

∂ηet(η)
∂
∂η′ et(η)

∣∣∣
θ=θ0

.

)
As a result, the asymptotic normality for θ̂ is shown and the asymptotic variance is given
by H−1V H−1.

5. Asymptotics of Mm estimators. In this section, we give conditions for asymptotic
normality of Mm estimators. Let

(5.1) Q(θ) = Eρ(θ
−1/2
1 , e1(η), . . . , em(η)).

The sample analog of Qn(θ) is defined as

(5.2) Qn(θ) =

(
n

m

)−1 ∑
1≤i1<···<im≤n

ρ(θ
−1/2
1 , ei1(η), . . . , eim(η)),

and

(5.3) θ̂n = argmin
θ∈Θ

Qn(θ).

Assumption 5.1.

(i) ρ(θ) is convex with respect to θ for each ϵt.
(ii) Q(θ) is well defined.
(iii) θ0 satisfying (3.2) exists and is unique.
(iv) For all diagonal elements (i, i),

∞∑
k=1

E|(g( α√
n
)1 − g(0)1)i(g(

α√
n
)k − g(0)k)i| < ∞.

(v) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

Theorem 5.2. Let θ̂n be defined in (5.3) under Assumption 5.1. Then we obtain

(i) θ̂n converges to the true value θ0 in probability as n → ∞.
(ii)

√
n(θ̂n−θ0) have a joint asymptotic normal distribution whose mean is 0 and the asymp-

totic covariance matrix is give by m2H−1V H−1, where

H = ∇2Q(θ0)

V = Var g(θ0).

Proof. Let J denote the set of allm element subsets of {1, . . . , n}. For any j = {i1, . . . , im} ∈
J , let Yj be the random vector (ei1 , . . . , eim). Accordingly, the notation ρ( α√

n
)t and ρ(0)t are

changed in the following way: for α = (α1, α2),

ρ(
α√
n
)j := ρ((θ01 +

α1√
n
)−1/2, Yj(η

0 +
α2√
n
)),

ρ(0)j := ρ((θ01)
−1/2, Yj(η

0)).
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For any fixed α and j, define

Znj = ρ(
α√
n
)j − ρ(0)j −

α′
√
n
g(0)j .

Note that EZnj = Q( α√
n
). For the same reason, we have

Var
∑

Znj
P−→ 0.

Since Var(n
(
n
m

)−1∑
Znj) ≤ m2Var

∑
Znj ,

n

(
n

m

)−1∑
Znj − nEZnj

P−→ 0.

Thus the result of Theorem 5.2 depends on the asymptotics of
√
n
(
n
m

)−1∑
g(0)j . Regard

g(0)j as a kernel of U-statistics, we define the degenerate kernel of g(0) by

gc0(x1, . . . , xc) =

c∑
r=0

(
c

r

)
(−1)c−r

∫
· · ·
∫
Rm−r

g(θ0, x1, . . . , xm)

m∏
i=r+1

dF (xi).

Suppose Un is generated by g(0) and U c
n is generated by gc0, we have by Hoeffding’s projection

that

Un =

m∑
c=1

(
m

c

)
U c
n =

m

n

n∑
t=1

g(0)t +Rn,

where Rn
P−→ 0. The conclusion is completed by the asymptotic normality of n−1/2

∑n
t=1 g(0)t.

6. Examples. Suppose the second order stationary process {Xt} is generated by the
model

(6.1) Xt − β0Xt−1 = ϵt,

where ϵt ∼ i.i.d. (0, σ2). For the estimation of β0, take

(6.2) bj(η) =

{
β j = 1,

0 j ≥ 2.

6.1. Asymptotics of L2 theory in AR(1) case. From Remark 4.3, the objective function in
L2 theory is given by

(6.3) Qn(θ) = log θ1 +
1

n

n∑
t=2

θ−1
1 (Xt − βXt−1)

2 + op(1).
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Note that the objective function is asymptotically equivalent to Whittle estimator. Also, the
estimator is a modification of least square estimation since the scale parameter is estimated
simultaneously. With

ρx(θ
0) =

2ϵ2

σ
− 2σ, ρy(θ

0) =
2ϵ

σ2
,

ρxx(θ
0) = 2σ2 + 2ϵ2, ρyy(θ

0) =
2

σ2
,

by Theorem 4.6 we obtain

H =

(
2σ−1 0
0 2(1− β2

0)
−1

)
,(6.4)

V =

(
4σ−2(µ4 − σ4) 0

0 4(1− β2
0)

−1

)
,(6.5)

where µ4 is the fourth moment of ϵt. As a result,

(6.6)
√
n(θ̂n − θ)

L−→ N (0, diag(µ4 − σ4, 1− β2
0)).

In the Gaussian case, µ4 − σ4 = 2σ4.

6.2. Asymptotics of L1 theory in AR(1) case (new aspects). One parameterization for L1

case is given in Remark 4.4. In this subsection, we are interested in another parameterization
with convex objective function defined by Koenker and Bassett (1978)’s check function ρτ (u).
That is,

(6.7) ρτ (u) = u(τ − 1(u < 0)),

where 1(·) is the indicator function. Suppose ρ(x, y) is defined by

(6.8) ρ(x, y) = ρτ (xy) + x−1.

Then the true parameters are given by

(6.9) θ01 =
1

2
E|ϵ|, bj(η

0) = β0δ(j, 1) for j ≥ 1,

from the result that Eϵt1(ϵt > 0) = 1
2E|ϵ| and EXt−11(et(η) < 0) ̸= 0 if bj(η) ̸= β0. Interest-

ingly, the true parameters do not depend on τ even τ is included in the check function. To
generalize the result, suppose more that

(6.10) κ = P (ϵ < 0),

where κ is different from τ in the check function. Then we obtain

ρx(θ
0) = ϵ(τ − 1(ϵ < 0))− θ01, ρxx(θ

0) = 2(θ01)
3/2,

ρy(θ
0) = θ01(τ − 1(ϵ < 0)), ρyy(θ

0) = δ(ϵ),
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where δ(·) is the Dirac delta function. In conclusion, the asymptotic variance of the M -
estimator defined by ρτ (u) is given by

(6.11) H−1V H−1 =

(1
4(θ

0
1)

−3(τ2σ2 + (1− 2τ)a) 0

0 τ2−2τκ+κ
σ2 f(0)−2(1− β2

0)

)
,

where a = Eϵ21(ϵ < 0). As a special case κ = τ , the variance of the coefficient parameter is
given by

(6.12)
τ(1− τ)

σ2
f(0)−2(1− β2

0).
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