RANDOM FIELDS
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1. REFERENCE

Tran (1990) JMA.
Hallin, Lu and Tran (2004) AS.

2. NOTATIONS

2.1. Random Fields.
1. ZN
2. I, ={i:1€ZV,1<i <np,k=1,...,N}
3. X; € R, where j € I,
4. f(z)
5 n = ny---NN
6. d(S,5") :=min{||i —#|;i € 5,3’ € &'}
7. f N2 5 RF

2.2. Kernel Density Estimator.

(i) the kernel density estimator

(ii) Let

2.3. Fundamental Conditions.

(al) Nonisotropic divergence (n — o0)

n — oo
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the N-dimensional integer lattice

a rectangular region on Z", i a site

a random field indexed by Z

the density function of X,

size of random fields

the Euclidean distance between S and S’

a symmetric function nondecreasing in each variable

if min{ng} — oo.
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(a2) Isotropic divergence (n = o)

’ﬁ‘gC forsome 0 < C < o0, 1 <j,k<N.
Nk

3. ASYMPTOTIC NORMALITY OF f,(z)

3.1. Assumptions.

(A1) {X; € R% 4 € ZV} is strictly stationary.
(A2) The joint probability density f; j(x,y) of X; and X; exists and satisfies | f; j(x,y) —
f(z)f(y)| < C for some constant C' and for all z, y and 1, j.

(B1) |K(z)| is uniformly bounded by a constant K.
(B2) Assume K has an integrable radial majorant, that is, Q(x) = sup{K(y) : |ly|| > ||=||}

is integrable.
(B3) (B3-1)

| K (x)|dz < oo.
Rd
(B3-2) (1)

Rd

(2) Suppose K is a probability density function on R? and for any z,y € R?
and some constant p > 0

[f(x) = F()l < pllz =yl
(C1) There exists a function o(t) | 0 as t — oo, such that whenever S, S’ C ZV,

a(B(S), B(S"))

sup{|P(AB) — P(A)P(B)|,A € B(S),B € B(S")}
< f(Card(S),Card(S"))p(d(S, S")).
(C2) (C2-1)
f(n,m) < min{m,n}.
(C2-2) for some k > 1 and some C' > 0,
Ffn,m) < C(n+m+ 1),
Remark 3.1. If f =1, then {X,} is called strongly mixing.

Remark 3.2. (A4) is an assumption to control the fastness of convergence of Ef,(x) to

f ().
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3.2. Asymptotic normality of f,(z).
Theorem 3.3 (Tran (1990), Theorem 3.1). Let (a2) hold with (C1) and (C2-1) with
p(x) = O0(z™")

for some > 2N. Let 0 < v < (u— N)u~t. If Assumptions (A1), (A2), (B1), (B2) and
(B3-1) hold and there exists a sequence of positive integers q = qn — 00 such that
~qd —v)2N
q= 0((nbn(1+(1 7)2 ))1/(2N))7
ng " — 0,
b;d(l—’Y)qN—u(l—fy) -0,

then

s 1 dN\1/2 frn(2) — Efn(z)
R e
has a standard normal distribution as n — oo.
Theorem 3.4 (Tran (1990), Theorem 3.2). Let (a2) hold with (C1) and (C2-1) with
p(a) = O0(e™*)
for some € > 0. Let 0 <~ < 1. If Assumptions (A1), (A2), (B1), (B2) and (B3-1) hold

and
(ﬁbi(1+(1*7)2N))1/(2N) (log ﬁ)_1 s o0,

then

N fn<33) _Efn(x)
(b) /2 ( )
o
has a standard normal distribution as n — oo.

Theorem 3.5 (Tran (1990), Theorem 3.3). Let (a2) hold with (C1) and (C2-1) with
conditions on ¢(x) as in Theorem 3.3 and 3.4. If Assumptions (A1), (A2), (B1), (B2)
and (B3-2) hold with

abdt? -0,
then

~ fn(x)_Efn(x)
() )
o
has a standard normal distribution as n — oo.

Theorem 3.6 (Tran (1990), Theorem 4.1). Let (a2) hold with (C1) and (C2-2) with
p(x) = O0(z™")

for some > 2N. Let 0 < v < (u— N)u~t. If Assumptions (A1), (A2), (B1), (B2) and
(B3-1) hold and there exists a sequence of positive integers q = qn — 00 such that

q= 0((ﬁbi(1+(1_7)2N))1/(2N)>
A(rbL)E=D/2g=1 _ 0,

b;d(l_')’) qN—M(l_'Y) — 0’
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then

~ fn(x)_Efn(x)
() )
o
has a standard normal distribution as n — oo.

4. LOCAL LINEAR SPATIAL REGRESSION

4.1. Notations.
1. g: 2+ g(z) := E[Y;]X; =] the spatial regression function g : R — R.

4.2. A weighted least square estimator.
(1) A weighted least square estimator

() =are, min Z (Y5 a0 —af (% @)K (75 ~)

() ag,a1)€RTEL - S
—
k=1,..,N
(2) Let
U fR‘i (u)du fRd UTK(u)du
fRd uK (u)du fRd UUTK(u)du 7
— UX . — Jra K (u)du oo u! K2 (u)du
3 = Var(Y;| X; = x) f( <fRd uK?(u)du g uu’ K?(u)du)
For
_ Pyl
9ij(®) = Ox;0x;’ Lj=1....4d,
u = (ul) 7ud)T’
d
Bo(af) _ ZZ 2] /UzU]K(u)d'Un
i=1 j=1
d d
Bi(x) — *f(w)zz g”(a:)/uzujuf(( )du
i=1 j=1

(3) Further, define

L4 d
By(z) = 522 gii(m)/u?K(u)du,
i=1 j=1

oj(x) = Var(Y;|X; =a)(f(z)™" | K*(u)du,

oi(x) = Var(V;|X; =z)(f(z))* (/ uuTK(u)du>71 (uuTKz(u)du> </Rd uuTK(u)du>

-1
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4.3. Modified Kernel. For any c := (cg, cl)T € R define
Ke(u) = (co + ¢ u) K (u).

4.4. Assumptions.

(A1) Replace X; € R? by (Y, X;) € R¥*Lin (Al).

(A2) (A2)

(A3) Y; has finite absolute moment Of order 2 + 4, that is, E|Y;|**® < oo for some § > 0.
(A4) g is twice differentiable and ¢” is continuous at all x.

(A5) (A5-1) (C2-1)

(A5-2) (C2-2)

(B1) Replace K(x) by Kc(x) in (B1).

(B2) Replace K(x) by K¢(x) in (B3-1).
(B3) For any ¢ € R K.(x) has an integrable second-order radial majorant, that is,
Qe (@)= sup {|lyl*Ke(y)}
lyll> ||l

4.5. Asymptotic normality of local linear spatial regression.
Theorem 4.1 (Hallin, Lu and Tran (2004), Theorem 3.1). Let (A5-1) hold with

p(r) = O(z™")

for some pp > 2(3+8)N/S. Let (44+6)N/(2+6) < v < pé/(2+6) — N. If Assumptions
(A1)-(A4) and (B1)-(B3) hold and there exists a sequence of positive integers ¢ = gn — 00
such that as n = oo,

q = o((Aby)"/ M),
ng * — 0,
qbid/(7(2+5)) <1

)

then as n = oo

) [, o)) ) o () i) S wo.u s,

If the kernel K(-) is a symmetric density function, then

2 2
(At (gn(ffn)(gzg(gvx))— gj’}g(i;;>bn) - N(O’ (Jof()x) Uf((]w)> ) '
Remark 4.2. Note that if the order of finite moments § — 0, then
2(34+9)N/6 — 2N.
Theorem 4.3 (Hallin, Lu and Tran (2004), Theorem 3.2). Let (A5-1) hold with
p(x) = O(e™*)
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for some & > 0. Let v > (4+ §)N/(2+0). If Assumptions (A1)-(A4) and (B1)-(B3) hold
and there exists a sequence of positive integers ¢ = qn — 00 such that as n = oo,

(ﬁbi(1+2N5/(7(2+5))))1/(2N) (lOg ’fb)_l — 00,

then as n = oo

) [, o)) o () ] S wo.u s,

If the kernel K(-) is a symmetric density function, then
. - — By(z)b2\ ¢ o2 (x) 0
Abd)1/2 (gn(w) 9(x) g n) LN 0’( 0 .
) g (@) — ¢ (@) © ("0 o)
Theorem 4.4 (Hallin, Lu and Tran (2004), Theorem 3.3). Let (A5-1) hold with
p(x) = O0(z™")

for some p > 2(34+8)N/8. Let (4+0)N/(2+0) <~ < ud/(2+8) =N and by, = [[X, bn,. If
Assumptions (A1)-(A4) and (B1)-(B3) hold and there exists a sequence of positive integers
q = Gn — 00 such that as

— : bd 1/2
q O(lgflél]v(nk ) )5

ng * — 0,
qbid/(v(2+5)) <1

then as n — oo
. — _1 [ Bo(x) c _ -
bd 1/2 gn(m) g(w) - U 1 0 b2 —>N 0.U 12 U T )
A" | (b G) - o2 Bi(a)) ] S MOUTS@TD
If the kernel K(-) is a symmetric density function, then
o dN\1/2 gn(x) — g(x) _Bg(m)b?’l, L U%(m) 0
i (" ) N (T )
Theorem 4.5 (Hallin, Lu and Tran (2004), Theorem 3.4). Let (A5-1) hold with
p(x) = O(e*)
for some € > 0. Let v > (4+ 6)N/(2+0) and by, = [[, b, If Assumptions (A1)-(A4)
and (B1)-(B3) hold and there exists a sequence of positive integers ¢ = qn — 00 such that

)1/2}bi5/(7(2+6))(

min {(nkbﬁk logn) ™! — oo,

1<k<N
then as m — 0o

(A )1/2 [(b Qn/(m) —g(x) ))) _y-! (BO(QU)

L — _
n(gn () — ¢ (x )bi} SN, U U H).
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If the kernel K(-) is a symmetric density function, then
. - — By(z)b2)\ ¢ oi(x) 0
Abd)1/2 (gn(x) 9(x) g n) LN 07( 0 .
) g (@) — ¢ (=) © ("0 o))
Theorem 4.6 (Hallin, Lu and Tran (2004), Theorem 3.5). Let (A5-2) hold with
p(x) = O(z™")
for some > 2(3+ d)N/S. Let (44 6)N/(2+96) < v < pd/(2+46) — N. If Assumptions
(A1)-(A4) and (B1)-(B3) hold and there exists a sequence of positive integers ¢ = qn — 00
such that as n = o0,
g = o((Abj) /N,
ﬁI%Jrququ -0,
qbfld/(v(2+5)) > 1,
then as n = o0
. - _1 (Bo(x) c _ _
nbd 1/2 < gn(x) g(w) )_U 1( 0 >b2 —>N0,U IEU IT.
#2750 o) () Bi(a)) ] S MOUTS@TD
If the kernel K(-) is a symmetric density function, then

o (gl e ) = (
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6. FURTHER READING

6.1. nonparametric regression.



