QR WITH LDP

YAN LIU

1. REFERENCE
Koul and Mukherjee (1994), JMA

2. NOTATIONS

1. X the n x p design matrix of known constants
2. Ty ith row of X, (1 X p)-matrix
3. F the common d.f. of {¢;}
4. p=(c,d) CR ={reR0< F(zx) <1}
5 G a measurable function from R to R
6. D, = (C'C)'/2, where C is of the full rank.
7. | Xnlla = sup{[| Xn(a)[, a << 1—a}
8. X, =05(1) =|Xnlla =0p(1) for every a € (0,1/2].
3. CONCEPTS AND DEFINITIONS
3.1. model. 7,12, ... stationary mean zero unit variance Gaussian process with

p(k) = Emnsr-
The response variable {Y,,;} satisfying
Ynl:m;@zﬂ+ela 1§’L§TL, ﬁeRpa

with ¢; = G(n;).

3.2. long range dependence.
p(k) = k=9L(k), for some 0 <0 <1, Vk>1,

where L(k) is positive for large k and is slowly varying at infinity.
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3.3. exponent. m is the Hermite rank of the class of functions.
Jo(z) = E{1(G(n) > 7) — F(2)}H,(n).
Also, suppose m(z) = min{q > 1; J; # 0}, then
m = inf{m(z);z € ¢}.

Also, define J;}(z) as
Ton(2) = EL(G(n) < )| Hn(n)]-

3.4. normalizing order. Assume 0 < 6 < 1/m,
Tn = n(l_me)ﬂLm/Z(n), n > 1.
3.5. regression transform.
Bla) =B+ F Ha)er, e =(1,0,...,0),

and
g(a) = f(F~H(a)), 0<a<l.

3.6. minimum-distance type estimator of 3.
Brmale) = argmin| D' T(t, )%
where

T(t,a) =Y p{l(Vp—x),t<0)—a},0<a<1, teR™
7

3.7. ath regression quantile.

~

Bn(a) = B(a) = { beRP: Z ho(Yni — ;b)) = minimum} ,
i=1
where hqo(u) = aul(u >0) — (1 —a)ul(u <0),u e R, 0<a <1

4. ASSUMPTIONS

4.1. Assumptions on v,; and &,;.
(GXO0-1) iy v =1,¥n>1

(GX0-2) maxi<i<n n'/?|yni| = O(1)

(GX1-1) 3y 7m =1,¥n>1
(GX1-2) maxi<i<n n1/2|ym| =0(1)

(GX1-3) maxi<i<n|&| = o(1)
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(GX2-1) F has a continuous density f.

(GX2-2) 7,1 37 [ymibnil = O(1).

(GX3-1) F has a continuous and positive density f.

(GX3-2) The functions Jp(z) and J - (x) are continuously differentiable with derivatives
equal to J,(z) and J,| ().

(GX4-1) F has a continuous and positive density f.
(GX4-2) f is uniformly continuous.

(GX4-3) The functions Jy,(z) and Jt(z) are continuously differentiable with derivatives
equal to Jy,(z) and Jf (z).

(GX4-4) | ()| V JH(x) = 0 as |z| — |¢| Vv d|.
(GX4_5) Tn_l Z:L:1|'7m€nl| = 0(1)

4.2. Assumptions on X.
(X.1) The first column of X is 1.

(X.2) (X'X) ! exists for all n > p.

(X.3) n'/?2max;||z/ ;D3| = O(1).

5. FORMULAE

6. RESULTS
Lemma 6.1 (km1994). Under Assumption GX0, we have Vx € 1,
! Im(T) 4
sup|7y, ' Y mi{l(e; < @) — F(2)} — 1 Tn > AniHm(mi)| = op(1).
€Y i ’ i
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Under Assumption GX1, we have Yz € 1,

Tn_l Z’Ym{ﬂ(@‘ <z+ gm)} - F(J,' + gm) - ]l(ﬁi < l‘) + F(.%)}’ = OP(l)-
Under Assumptions GX1 and GX2, then

7'n_1 Z’Ym’{ﬂﬁ <z+&)}—1(e <z)} — 7'n_1 Z’ymfmf(x)‘ =op(1).

Under Assumptions GX1 and GX3, then for any 0 < k < oo with K = {x € 9; |x| < k},

T va-{ﬂ(ei <a+&u)} - L <)} -7 vafnif(x)) = op(1).

sup
zeK

Under Assumptions Assumptions GX1 and GX4, for 1 = [c,d],

it Z’Ym'{]l(ei <z+&N)Y -1 <)} -7, Z%igm»f(:c)’ = op(1).

sup
3061/7

Lemma 6.2 (km1994). Under Assumption X, we have
In(F~(a)) ‘

m)

sup || B;'7(B(a). @)~ S

‘ = op(1).
0<a<1

and

15[l = Op(1).
Under Assumptions X and GX3-1, we have for every 0 < K < oo and 0 < o < 1,

s [ BT (B@) + 451,0) = T(B(e). )] - sq(a)| = or (1),

Also, for every 0 < o < 1,
Az(Bale) = B(a)) = —{a()} ' B T(B) (@), a) + 0p(1)

= ey s, D o),
and
Au{Bn(a) = Brala)} = op(1).
Under Assumptions X and GX4, we have for every 0 < K < oo and 0 < a < 1,

O<a<slu|1|)8”<KHB;1[T(ﬁ(a) +A7ls ) — T(B(a),a)] — sq(a)H =op(1).

Theorem 6.3. Under Assumptions X and GX3-1, we have for any 0 < a < 1,

As(Bu(a) = B(a)) = —{a(@)} ' B ' T(B) (@), @) + op(1)
F~l(a))
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Consequently, for any 0 < a1 < ag < --+ < a < 1,

[Aac(/én(al) - ﬁ(al))7 EERE) A:E(Bn(ak) - B(ak»]
= —(m) ™ [{g(e)} I (F (), -+ {alar)} I (F~H(aw))] @ S + op(1).
Under Assumptions X and GX38-1 and GX3-2, then

Az(Bu(a) = B(a)) = Op(1).



