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2. Notations

1. (X,Y ) ∈ Rd × R a pair of random variables
2. θ E(Y |X) = θ(X)
3. k a nonnegative integer
4. Θ the collection of k-times continuously differentiable function θ
5. U an open interval containing [0, 1]
6. p > 0 p-times continuously differentiable on U

7. θ̂n estimator
8. |·| the Euclidean norm of ·
9. ♯(·) the number of elements in ·
10. δn a seq of positive constants which tend to 0
11. Nn(x) = {i : 1 ≤ i ≤ n and |Xi − x| ≤ δn}
12. Nn(x) = ♯(Nn(x))
13. C ⊂ Rd a compact subset having a nonempty interior
14. q ∈ (0,∞]
15. ∥·∥q the Lq norm
16. bn a seq of eventually positive constants
17. J an open interval
18. t ∈ J an unknown real-valued mean parameter of the distribution
19. α = (α1, . . . , αd)
20. [α] = α1 + · · ·+ αd

21. Dα the differential operator
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22. T (θ) a linear combination with constant coefficients of Dαθ, [α] ≤ k
23. qα real constants for [α] ≤ k
24. Q =

∑
[α]≤k qαD

α

25. m the order of Q, m = max([α] : [α] ≤ k and qα ̸= 0)
26. r = (p−m)/(2p+ d)

3. Concepts and definitions

3.1. Parameter space. Let 0 < β ≤ 1 and 0 < K2 <∞. For x ∈ Rd and θ(x) ∈ J ,

|Dαθ(x)−Dαθ(x0)| ≤ K2|x− x0|β for x0, x ∈ U and [α] = k.

Note that

p = k + β

is a measure of the smoothness of the functions in Θ.

3.2. Estimators.

3.2.1. response and variable. θ is the regression function of the response Y on the measur-
able variable X. E(Y |X) = θ(X).

3.2.2. parametric. If θ̂n ∈ Θ for all n ≥ 1, where Θ is a collection of functions which are
defined in terms of a finite number of unknown parameters.

3.2.3. nonparametric. Otherwise.

3.3. Rate of convergece.

3.3.1. lower rate of convergence. If there is a c > 0 such that

lim
n

inf
T̂n

sup
Θ
Pθ(∥T̂n − T (θ)∥q ≥ cbn) = 1,

where the infimum is over all possible estimator T̂n.

3.3.2. achievable rate of convergence. If there is a sequence {T̂n} of estimators and a c0
such that

(3.1) eq:2.2.1 lim
n

sup
Θ
Pθ(∥T̂n − T (θ)∥q ≥ cbn) = 0.

3.3.3. optimal rate of convergence. If it is both a lower and an achievable rate of conver-
gence.

3.3.4. asymptotically optimal. If {bn} is the optimal rate of convergence and {T̂n} satisfies

(3.1), the estimators T̂n, n ≥ 1, is said to be asymptotically optimal.
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3.4. Assumptions.

⟨asp:2.2.1⟩Assumption 3.1. Suppose l(y|x, t) = log h(y|x, t).
(1) As a function of t, h is strictly positive and continuously differentiable.
(2) The equation ∫

h(y|x, t)ϕ(dy) = 1

can be differentiated with respect to t to yield∫
h′(y|x, t)ϕ(dy) = 0

and ∫
h′′(y|x, t)ϕ(dy) = 0.

(3) There are positive constants ϵ0 and K1 and there is a function M(y|x, t) such that
on the indicated domain

|l′′(y|x, t+ ϵ)| ≤M(y|x, t) for |ep| ≤ ep0

and ∫
M(y|x, t)h(y|x, t)ϕ(dy) ≤ K1.

Remark 3.2. The condition is needed to verify that {bn} is a lower convergence sequence
with the assumption that C have a nonempty interior.

⟨asp:2.2.3⟩Assumption 3.3. For some s > 0,∫
es|y−t|h(y|x, t)ϕ(dy)

is bounded for x ∈ U and t ∈ J .

Remark 3.4. The condition is required to verify that with compactness of C certain rates
of convergence are achievable and certain estimators are asymptotically optimal.

⟨asp:2.2.5⟩Assumption 3.5. For every λ ∈ (0, 1/d) and c > 0, there is a c′ > 0 such that

lim
n
P (♯{i : 1 ≤ i ≤ n and |Xi − x| ≤ cn−λ} ≥ c′n1−λd for allx ∈ U) = 1.

Remark 3.6. The condition on the asymptotic distribution of X1, . . . , Xn is required to
guarantee achievability and asymptotic optimality.

If U is a polyhedron (polytope?), this condition is implied by the following one.

⟨asp:2.2.7⟩Assumption 3.7. The random variables X1, . . . , Xn are the first n terms of an i.i.d.
sequence of random variables each having distribution F , the density of whose absolutely
continuous component is bounded away from 0 on U .



4 YAN LIU

3.5. Results.
⟨thm:2.2.8⟩

Theorem 3.8. Under Assumptions 3.1, 3.3 and 3.5,

• If 0 < q <∞, then {n−r} is the optimal rate of convergence;
• If q = ∞, then {(n−1 log n)r} is the optimal rate of convergence.

Corollary 3.9. Suppose d = 1. The estimators θ̂n, n ≥ 1, are said to be asymptotically
optimal if

n−2p/(2p+1)

∫ 1

0
{θ̂n(x)− θ(x)}2dx

is bounded in probability as n→ ∞.

Proof. Note that q = 2. As the statement of Theorem 3.8, we see that the optimal rate is
n−r where

r =
p−m

2p+ d
.

Here, m = 0 and d = 1 with L2 norm, the optimal rate is

n−2p/(2p+1).

□
Example 1 (Spiegelman and Sacks (1980)). Let θ̂n be the kernel estimator.

θ̂n =
1

Nn(x)

∑
Nn(x)

Yi.

• If p = 1 and δn = n−1/3, then θ̂n is asymptotically optimal.
• If p = 2, δn = n−1/5 and f is absolutely continuous and f ′ is square integrable on
U , then θ̂n is asymptotically optimal.

3.5.1. Without any smoothness assumption of f .

• P̂n(·;x) the polynomial of degree p− 1 which minimizes∑
Nn(x)

{Yi − P̂n(Xi;x)}2,

and then for bounded from zero and infinity f ,

θ̂n(x) = P̂n(x;x).

• Or without the assumption of boundedness of f if P̂n(·;x) minimizes∑
Nn(x)

{Yi − P̂n(Xi;x)}
Wn(Xi;x)

,

where Wn(·;x) is an appropriate positive weight function.

Remark 3.10. {n−r} is also the optimal rate of convergence if ∥T̂n−T (θ)∥q (as function)

is replaced by |T̂n(x0)− T (x0; θ)| (pointwise).
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4. questions

Suppose q = 2.

• Let Assumption 3.7 holds. Under which additional conditions on F , is {n−r} an
achievable rate of convergence?

• Let A denote either the collection of functions θ on Rd which are additive

θ(x1, · · · , xd) = θ1(x1) + · · ·+ θd(xd)

or the collection of the form

θ(x1, · · · , xd) = ψ(β1x1 + · · ·+ βdxd).

Suppose Θ = A∩Θ and set r1 = (p−m)/(2p+1). Is {n−r1} an achievable rate of
convergence?

• Suppose that t is the median of the distribution instead of its mean. Is {n−r} still
an achievable rate of convergence?

5. local linear quantile regression

a regression quantile as the minimizer of

E{ρp(Y − θ)|X = x}
• The check function

ρp(z) = pz1[0,∞)(z)− (1− p)z1(−∞,0)(z).

• Linear fitting

Sn,l =
n∑

i=1

K(
x−Xj

h1
)(x−Xi)

l, l = 1, 2

• the wight function

ωj(x;h1) = K(
x−Xj

h1
)[Sn,2 − (x−Xj)Sn,1]

• the double-kernel quantile estimator q̃p to solve

p =
1∑

j ωj(x;h1)

∑
j

ωj(x;h1)Ω(
q̃p(x)− Yj

h2
)

6. notations

6.1. nonparametric regression.

1. I ⊆ R a possibly infinite interval
2. f(·) : I → R
3. σ2(·) : I → (0,∞)
4. H : R → [0, 1] an increasing c.d.f.
5. (Xni, Yni), i = 1, . . . , n observation
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(6) deterministic
xni = H−1(i/(n+ 1)), i = 1, . . . , n

(7) random
Xni ∼ i.i.d.H, i = 1, . . . , n

(8) The conditional distribution of Y given X

Yni = f(xni) + σ(xni)ϵni, ϵ ∼ i.i.d.N (0, 1), i = 1, . . . , n

9. Θ the parameter space consists of f

6.2. white noise.

(1) 0 ∈ I

2. {Bt : t ∈ I} Brownian motion

(3) the Gaussian process with

dZ
(n)
t = µ(t)dt+ λ(t)dBt/

√
n

dY
(n)
t = ν(t)dt+ λ(t)dBt/

√
n

(4) µ ∈ Θ

5. g
(n)
X the probability density for X with respect any dominating measure ξ

(6) the disparity L1

L1 =

∫
|g(n)Y (ω)− g

(n)
Z (ω)|ξ(dω)

Remark 6.1. Under the following additional conditions,

(1) H absolutely continuous with t.
(2) h = dH/dt is h > 0 a.e. on I.
(3) Define

V (n)
τ = Z

(n)
H−1(τ)

.

Then,
dV (n)

τ = µ∗(τ)dτ + λ∗(τ)dBτ/
√
n,

where

µ∗(τ) =
µ(H−1(τ))

h(H−1(τ))
, λ∗2(τ) =

λ2(H−1(τ))

h(H−1(τ))
.

As a result, from Remark 2.1 and 2.1.1. and 2.1.3., we can without loss of generality
assume

I = [0, 1].
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6.3. statistical equivalence.

1. P(1), P(2) two statistical problems

2. X (1), X (2) two sample spaces

3. {G(i)
Θ : θ ∈ Θ} the respective families of distributions

4. A action space
5. L : Θ×A → [0,∞) loss function

6. δ(i) generic symbol for a decision procedure in ith problem

7. R(i)(δ(i), L, θ) The risk from using procedure

(7)
∥L∥ = sup{L(Θ, α) : θ ∈ Θ, α ∈ A}.

Definition 6.2 (Le Cam’s metric).

∆(P(1),P(2)) = max
[
inf
δ(1)

sup
δ(2)

sup
θ

sup
L:∥L∥=1

|R(1)(δ(1), L, θ)−R(2)(δ(2), L, θ)|,

inf
δ(2)

sup
δ(1)

sup
θ

sup
L:∥L∥=1

|R(1)(δ(1), L, θ)−R(2)(δ(2), L, θ)|,
]
.

Definition 6.3 (Asymptotically equivalent).

lim
n→∞

sup
θ

sup
L:∥L∥=1

|R(1)(δ(1)n , L, θ)−R(2)(δ(2)n , L, θ)| = 0.

Lemma 6.4. Let X and its σ-field be a Polish space with its associated Borel field. Let
P(1) denote an experiment with sample space X . Let S : X → Y be a sufficient statistic
and let P(2) denote the experiment in which Y = S(X) is observed. Then ∆(P(1),P(2)) =
0.

Theorem 6.5.

|R(1)(δ(1), L, θ)−R(2)(δ(2), L, θ)| ≤ L1(P
(1),P(2))∥L∥

Define the Hellinger metric H(G(1), G(2)) is defined by

H2(G(1), G(2)) =

∫
(g(1)(x)1/2 − g(2)(x)1/2)2ξ(dx).

Lemma 6.6.
L1(G

(1), G(2)) ≤ 2H(G(1), G(2)).

Also, for product measures,

H2(G(1), G(2)) = 2
[
1−

m∏
j=1

[
1− H2(G(1), G(2))

2

]]
For two normal distributions,

H2(N (µ1, σ
2
1),N (µ2, σ

2
2)) = 2

[
1−

[ 2σ1σ2
σ21 + σ22

]1/2
exp

[
− (µ1 − µ2)

2

4(σ21 + σ22)

]]
.
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For two multivariate normal distributions with the same mean satisfies

H2(N (µ), αQ), N(µ, α IdRn) ≤ 2∥Q− IdRn∥2HS, Q ∈ Rn×n, α > 0.

Remark 6.7.

∥f − Pnf∥2L2 = ∥f − Pnf∥2L2 + ∥Pnf − Pnf∥2L2 ,

which shows the distance by classical distance of the Le Cam and the distance caused by
the relation between the dimension and wavelets. Or equivalently, canceling the distance
can be regarded as

lim
n→∞

n

σ2

( n∑
j=1

(Eyj −Ezj)
2 +

∞∑
j=n+1

(Ezj)
2
)
= 0.

7. wavelets

7.1. classification.

Isometric approximation: the Fourier approximation, the Haar wavelet
Isomorphic approximation: B-spline

7.2. Isometric approximation. Define

Fd
S,per(s,R) =

{
f ∈ L2([0, 1]d)

∣∣∣∑
l∈Z2

|l|2s∞|⟨f, φl⟩|2L2 ≤ R2
}
.

Suppose

Z := (Dn|sn)−1Y.

Theorem 7.1 (Reiss (2008)). For d-dimensional periodic Sobolev classes Fd
S,per(s,R) with

regularity s > d/2 and equidistant design on the cube [0, 1]d, the nonparametric regression
experiment Ed

n and the Gaussian shift experiment Gd
n are asymptotically equivalent as n→

∞. The Le Cam distance satisfies

∆Fd
S,per(s,R)(E

d
n,Gd

n) ≲ σ−1Rn1/2−s/d.

7.3. Isomorphic approximation. Define

Fd
S(s,R) =

{
f ∈ Hs([0, 1]d)

∣∣∣∥f∥Hs ≤ R
}
,

where ∥·∥Hs denotes the standard L2-Sobolev norm of regularity s on [0, 1]d.

Theorem 7.2 (Reiss (2008)). For general d-dimensional Sobolev classes Fd
S(s,R) with

regularity s > d/2 and equidistant design on the cube [0, 1]d, the nonparametric regression
experiment Ed

n and the Gaussian white noise experiment Gd
n are asymptotically equivalent

as n→ ∞. The Le Cam distance satisfies

∆Fd
S (s,R)(E

d
n,Gd

n) ≲ σ−1Rn1/2−s/d.
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7.4. Random design. Suppose

Zr :=

n0∑
j=1

⟨Y, φn
j ⟩nφn

j +

n∑
j=n0+1

⟨Y, φn
j ⟩nφj .

Theorem 7.3 (Reiss (2008)). For d-dimensional periodic Sobolev classes Fd
S,per(s,R) with

regularity s > d/2, the nonparametric regression experiment Ed
n,r with random design and

the Gaussian shift experiment Gd
n are asymptotically equivalent as n0, n → ∞ and n0 =

o(n1/2). The Le Cam distance satisfies

∆Fd
S,per(s,R)(E

d
n,r,Gd

n) ≲ n−1/2n0 + σ−1Rn
1/2−s/d
0 .

8. words

1. a possibly infinite interval 無限を含んでもよい区間
2. implicit 暗黙の
3. felicitous 適切な
4. alleviate 軽減する
5. conspicuous 顕著な
6. allude 言及する
7. trait 特徴
8. proximity 近接
9. an intriguing example 興味をそそる例
10. anthropometric 人体測定の
11. tricep 三頭筋
12. skinfold measurement 皮下脂肪測定
13. Gambia villages ガンビアの村
14. steady 一定の、不変の
15. seminal 先駆的で重要な
16. ad hoc 特別な、臨時の
17. reside 備わっている
18. interest center on

9. Further Reading

9.1. nonparametric regression. For estimating the whole function, see Naussbaum (1985),
Speckman (1985), Donoho, Liu and MacGibbon (1990) and Golubev and Nussbaum (1990).

For estimating a point functional such as f(x0), see Ibragimov and Hasminskii (1982),
Donoho and Liu (1991) and Donoho and Low (1992).

For estimating a nonlinear functional in nonparametric regression (and white noise
model), see Donoho and Nussbaum (1990).

The minimax sequence based on the regression model is found in Golubev (1987, 1991).
For the problem of estimating a linear functional in regression (and white noise), see Lepskii
(1991).
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The examples of estimating optimal, possibly random, bandwidths in the regression (and
also white-noise) are given in Hall and Johnstone (1992).

9.2. white noise model. For estimating the whole function, see Pinsker (1980).
For estimating a point functional such as f(x0), see Ibragimov and Hasminskii (1984).
For estimating a nonlinear functional in white noise model, see Fan (1991b).
For estimating the whole function based on indirect observations, see Fan (1991a).
The minimax sequence based on the white noise model is found in Efroimovich and

Pinsker (1984).


