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1. Model Class in Time Series Analysis

1. Let D1 be

D1 = {f ; f(λ) =
∞∑

r=−∞
a(r) exp(−irλ), a(r) = a(−r),

∞∑

r=−∞
|r||a(r)| < ∞}.

2. Let DARMA be

DARMA ={f ; f(λ) = σ2

2π

|
∑q

j=0 aje
ijλ|2

|
∑p

j=0 bje
ijλ|2

, σ2 > 0, p, q integers

q∑

j=0

ajz
j and

q∑

j=0

ajz
j are both bounded away from zero for |z| ≤ 1}.

2. Formulae

Lemma 2.1 (Taniguchi (1983)). Suppose f1(λ), . . . , fs(λ) ∈ D1 and g1(λ), . . . , gs(λ) ∈ DARMA.
Suppose the Toeplitz matrices are defined by

(Γj)ml =

{∫ π

−π
ei(m−l)λfj(λ)dλ

}
,

(Λj)ml =

{∫ π

−π
ei(m−l)λgj(λ)dλ

}
.

Then
1

n
tr(Γ1Λ

−1
1 Γ2Λ

−1
2 · · ·ΓsΛ

−1
s ) =

1

2π

∫ π

−π

s∏

j=1

{fj(λ)gj(λ)−1}dλ+O(n−1).

Lemma 2.2 (TK or TA (1979)).

√
n(θ̂in−θi) = Īii

′
Zi′+n−1/2

[
Īii

′
Īj

′k′
Zi′j′Zk′+

1

2
Īii

′
Īj

′m′
Īk

′l′ Γ̄i′j′k′Zm′Zl′

]
+op(n

−1/2), i = 1, . . . , p.

Suppose

Iij =
1

4π

∫ π

−π
(∂ifθ(ω)∂jfθ(ω))fθ(ω)

−2dω.
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Jijk =− 1

2π

∫ π

−π
(∂ifθ(ω)∂jfθ(ω)∂kfθ(ω))fθ(ω)

−3dω

+
1

4π

∫ π

−π
(∂ifθ(ω)∂j∂kfθ(ω))fθ(ω)

−2dω.

Kijk =
1

2π

∫ π

−π
(∂ifθ(ω)∂jfθ(ω)∂kfθ(ω))fθ(ω)

−3dω.

3. some lemmas

Lemma 3.1 (Petrov’s lemma). Consider X is a d-dimensional random vector with distribution
function F . Suppose there are a constant c ∈ (0, 1] and another constant c1 ∈ (0,∞) such that,

|E eiu·X | ≤ 1− c (3.1)

for all u ∈ Rd satisfying ∥u∥ ≥ c1. Then for any u ∈ Rd and ∥u∥ ≤ c1,

|E eiu·X | ≤ exp(− c

8c21
∥u∥2). (3.2)

Proof. Denote g(u) = |Eeiu·X |2. Then

g(u) =

∫

Rd

∫

Rd

cos(u · (x− y))F (dx)F (dy), (3.3)

since F(dx)F(dy) is an even function. Note 1− cos2(x) ≤ 2(1− cos(x)), we have

1− g(2mx) ≤ 4m(1− g(x)) for all x ∈ Rd. (3.4)

The remainder of proof is left for readers.

Assumption 3.2 (Cramër’s condition).

lim sup
|u|→∞

|E eiu·Z1 | < 1. (3.5)

Denote

pp−2(z;X) = dΨp−2(X)/dz (3.6)

w(f ; r, F ) =

∫

Rd

sup
z:|z|≤r

|f(y + z)− f(y)|F (dy). (3.7)

Theorem 3.3. Suppose L0 > 0, and a symmetric matrix Σ0 satisfies Σ0 > Σ. Under assumption
(??), for some constants C and δ > 0, we have

|E f(Sn)−
∫

Rd

f(z)pp−2(z;Sn) dz| ≤ Cω(f ;n−L0 , Nd(0,Σ0)) + o(n−(p−2)/2−δ). (3.8)

Proof. See Yoshida(2006).
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4. Information Geometry

Define
gij = ⟨∂i, ∂j⟩ = Ep[ ∂il∂j l ]. (4.1)

Then the class of probability function constitute a Rieman manifold.
We have α-connection defined as follows:

Γ(α)
ijk = Ep

[(
∂i∂j l +

1− α

2
∂il∂j l

)
∂kl

]
(4.2)



ANDERSON(1971)–SOME THEOREMS

GEN RYU

Part 1. For Kreiss(1987)

[Lemma 5.5.2 –Theorem 5.5.7]

1. the model

(1.1) yt +Byt−1 = ut.

or

(1.2) yt + β1yt−1 + · · ·+ βpyt−p = ut.

Under the assumption (A.1) below, we can write the process as

yt =
∞∑

s=0

(−B)sut−s, t = . . . ,−1, 0, 1, . . . .

Let F be the sample variance, then it can be written in the form like

F = Eyty
′
t =

∞∑

s=0

(−B)sΣ(−B′)s.

Also define F̃ as

F̃ =
∞∑

s=0

B̃sΣ̃B̃′s,

where

Σ̃ =

(
σ2 0′

0 O

)
, B̃ =

⎛

⎜⎜⎜⎜⎝

β1 β2 β3 · · · βp
−1 0 0 · · · 0
0 −1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎠
.

Date: May 15, 2012.
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2. assumptions

2.1. Set 1.

(A.1) {yt} is a sequence of random vectors satisfying (1.1) with {ut} independently and
identically distributed with Eut = 0 and Eutu′

t = Σ.
(A.2) −B has all characteristic roots less than 1 in absolute value.
(A.3) F is positive definite.

2.2. Set 2.

(A.1)’ {yt} is a sequence of random vectors satisfying (1.2) with {ut} independently and
identically distributed with Eut = 0 and Eu2t = σ2.

(A.2)’ The roots of the associated polynomial equation are less than 1 in absolutely value.

3. Theorems

Theorem 3.1. Under the set 1 of assumptions,
√
T (B̂′ −B′) has a limiting normal dis-

tribution with mean 0 and covariance matrix F−1 ⊗Σ.

Theorem 3.2. Under the set 2 of assumptions,
√
T (β̂ − β) has a limiting normal distri-

bution with mean 0 and covariance matrix σ2F̃−1.

Instead of (A.1) or (A.1)’, we have the result if we have the assumption
(A.1)” E|uit |2+ϵ < m, i = 1, 2, . . . , p, t = 1, 2, . . . , for some ϵ > 0 and some m.

4. auxiliary results

4.1. Equation. It is true that
F = Σ+BFB′,

which shows that if Σ is positive definite, then F is also positive definite.



Complex Analysis; 留数計算など
Yan LIU

1. 基本

1.1. 心得

複素解析のポイント

1. 積分経路を決める；
2. 正則であるため、コーシー積分をする；
3. もし特異点がある場合、留数を求める。

1.2. Example

Calculation✓ ✏
∫ 1

0

1

x+ 1
dx = ? (1.1)

✒ ✑
As what we are taught in the calculus course, you can easily answer this question. The answer is

∫ 1

0

1

x+ 1
dx = [ log(x+ 1) ]10 = log 2. (1.2)

What we will do here is to apply the residual theorem to it! Let us consider the integral is on
the complex plane, and we choose the integral path as follows.

1
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Then,
∫ 1

0

1

x+ 1
dx = −

∫ π

0

1/2ieiθ

1 + 1/2 + 1/2eiθ
dθ = −

∫ π

0

ieiθ

3 + 1eiθ
dθ (1.3)

=

∫ 1

−1

1

3 + y
dy = [ log(3 + y) ]1−1 = log 2. (1.4)

2. Integration with Residue Theorem

Formula 1.1✓ ✏
∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2

. (2.1)

✒ ✑
To derive the formula, you only have to think about the singularity in it.

2.1. Time Series Model

We will give some examples of integration of spectrums to look at how powerful residue theorem is
in time series.

2.1.1. MA(1)

∫ π

−π
(1 + θeiλ)(1 + θe−iλ) dλ =

∫

|z|=1
(1− θz)(1− θ/z)

dz

iz
(2.2)

=

∫

|z|=1

(1− θz)(z − θ)

iz2
dz (2.3)

= 2πi · Res(fMA(1), 0) = 2π(1 + θ2). (2.4)

Formula 2.1✓ ✏
σ2

2π

∫ π

−π
(1 + θeiλ)(1 + θe−iλ) dλ = σ2(1 + θ2) (2.5)

✒ ✑
2.2. AR(1)

∫ π

−π

1

(1− θeiλ)(1− θe−iλ)
dλ =

∫

|z|=1

1

(1 + θz)(1 + θ/z)

dz

iz
(2.6)

=

∫

|z|=1

1

(1 + θz)(z + θ)

dz

i
(2.7)

= 2πi · Res(fAR(1),−θ) =
2π

1− θ2
. (2.8)
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Formula 2.2✓ ✏
σ2

2π

∫ π

−π

1

(1− θeiλ)(1− θe−iλ)
dλ =

σ2

1− θ2
(2.9)

✒ ✑
2.3. ARMA(1,1)

∫ π

−π

(1 + θeiλ)(1 + θe−iλ)

(1− φeiλ)(1− φe−iλ)
dλ =

∫

|z|=1

(1− θz)(1− θ/z)

(1 + φz)(1 + φ/z)

dz

iz
(2.10)

=

∫

|z|=1

(1− θz)(z − θ)

(1 + φz)(z + φ)z

dz

i
(2.11)

= 2πi(Res(fARMA(1),−φ) + Res(fARMA(1), 0)) (2.12)

= 2π
1 + 2θφ+ θ2

1− φ2
. (2.13)

Formula 2.3✓ ✏
σ2

2π

∫ π

−π

(1 + θeiλ)(1 + θe−iλ)

(1− φeiλ)(1− φe−iλ)
dλ = σ2 1 + 2θφ+ θ2

1− φ2
. (2.14)

✒ ✑
2.4. AR(2)

∫ π

−π

1

(1− θ1eiλ − θ2ei2λ)(1− θ1e−iλ − θ2e−i2λ)
dλ (2.15)

=

∫

|z|=1

z

(1 + θ1z − θ2z2)(z2 + θ1z − θ2)

dz

i
(2.16)

Note that the roots z± of z2 + θ1z − θ2 = 0 lies in the unit circle, and z2± = −θ1z± + θ2, then

1 + θ1z− − θ2z
2
− = (1− θ22) + (1 + θ2)θ1z− = (1 + θ2)(1− θ2 + θ1z−). (2.17)

Note again that z+ + z− = −θ1 and z+z− = −θ2,

(equation above) = 2π(Res(fAR(2), z+) + Res(fAR(2), z−)) (2.18)

= 2π
( z+
(1− θ2)(1− θ2 + θ1z+)(z+ − z−)

+
z−

(1− θ2)(1− θ2 + θ1z−)(z− − z+)

)

= 2π
1− θ2

(1 + θ2)[ (1− θ2)2 − θ21 ]

Formula 2.4✓ ✏
σ2

2π

∫ π

−π

1

(1− θ1eiλ − θ2ei2λ)(1− θ1e−iλ − θ2e−i2λ)
dλ =

(1− θ2)σ2

(1 + θ2)[ (1− θ2)2 − θ21 ]
(2.19)

✒ ✑
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3. Estimation for model

A way to estimate the coefficients of models is to use the spectrum. Let us think the AR(1) model
fitted by AR spectrum f(λ; θ):

∂

∂θ

∫ π

−π

(1 + θeiλ)(1 + θe−iλ)

(1 + 1/2eiλ)(1 + 1/2e−iλ)
dλ = 0. (3.1)

The integrand can be looked as an ARMA model, i.e. the result will be

∂

∂θ

1− θ − θ2

3/4
= 0, (3.2)

and then the true value is

θ0 =
1

2
. (3.3)

4. Some interesting transformation

It is easy to see that
1

2
(eiθ + e−iθ) = cos θ. (4.1)

Formula 2.1✓ ✏
Let θ = iz, then

cosh z =
1

2
(e−z + ez) = cos iz. (4.2)

Similarly,
sinh z = −i sin iz. (4.3)✒ ✑Game
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1. Preliminaries

1.1. notations.

1. p(x) the density of η1
2. f(x) the density of ϵ
3. θ0(τ) = (β0(τ), γn)T the true value of θ(τ)

1.2. Model.

• Model
Yi = γnYi−1 + ϵi,

where for a real number γ,

γn = 1− γ/n

• Innovations

ϵi =
∞∑

j=0

cjηi−j ,

where

ck =

{
0, when k = 0,

k−βl(k) when k ≥ 1,

and l(·) is a slowly varying function and

β > 1/α,

within the J1 topology,

a−1
n

[ns]∑

i=1

ηi
J1−→ Za(s),

Date: October 21, 2014.
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2 YAN LIU

where for a slowly varying function L(x),

an = inf{x : P (|η0| > x) ≤ 1/n} = n1/αL(n).

1.3. Assumptions.

• |p′(x)| ≤ C1(1 + |x|)−(1+δ) for some δ > max{0,α− 1} and all x ∈ R

• |p′(x)− p′(y)| ≤ C2|x− y|(1 + |x|)−(1+δ) for all x, y ∈ R with |x− y| < 1

2. Main Results

Theorem 2.1. Assume assumptions above. If β > 2/α, then

Dn(θ̂(τ)− θ0(τ))
L−→ σ

f(β0(τ))
(A(s))−1

(
W (τ, 1),

∫ 1

0
S(s)dW (τ, s)

)T
,

where

A(x) =

∫ 1

0
(1, x(s))T (1, x(s))ds.

In particular,

an
√
n(α̂(τ)− γn)

L−→ σ

f(β0(τ))

∫ 1
0 S(s)dW (τ, s)−W (τ, 1)

∫ 1
0 S(s)ds

∫ 1
0 S2(s)ds−

(∫ 1
0 S(s)ds

)2

and
( n∑

t=1

Y 2
t−1 −

( n∑

t=1

Yt−1
)2)1/2

(α̂(τ)− γn)
L−→ N

(
0,

σ2

f2(β0(τ))

)
,

where

Dn = diag(
√
n, an

√
n),

and

σ2 = Eψ2
τ (ϵ0) + 2

∞∑

j=1

Eψτ (ϵ0)ψτ (ϵj),

a standard Brownian motion W (τ, ·) of

S(s) = λ(Zα(s)− γ

∫ s

0
e−γ(s−t)dZα(t)),

λ =
∞∑

j=0

cj .
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3. Quantile Regression

3.1. Quantile Regression.

• ?
MLE by assuming that the v′ts are i.i.d. skewed-Laplace distributed with unit scale

• p.d.f.

f(v; δ, τ) =
τ(1− τ)

δ
exp

{
−v

δ
(τ − (v < 0))

}

• In the case of heteroscedasticity, ? suppose

ht = Var(vt|Ft−1).

Assume
ϵt = vt/

√
ht,

its pdf is

g(ϵt; τ) =
√

1− 2τ + 2τ2 exp
{
ϵt

√
1− 2τ + 2τ2

τ − (ϵt ≥ 0)

}
.

4. summary

(1) Bayesian inference setting

(2) Model selection with DIC

(3) Two-regime threshold quantile CAPM-GARCH model

qτ (rt) =

{
φ(1)0 (τ) + φ(1)1 (τ)rt−1 + β(1)(τ)rm,t, if rm,t−d ≤ c(τ)

φ(2)0 (τ) + φ(2)1 (τ)rt−1 + β(2)(τ)rm,t, if rm,t−d > c(τ)

ht =

{
α(1)
0 (τ) + α(1)

1 (τ)a2t−1 + λ(1)(τ)ht−1, if rm,t−d ≤ c(τ)

α(2)
0 (τ) + α(2)

1 (τ)a2t−1 + λ(2)(τ)ht−1, if rm,t−d > c(τ)
,

where
at−1 = rt−1 − qτ (rt−1).

(4) Parameter estimation
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1. DIC

1.1. notations.

1. r the set of data
2. θ the unknown parameters
3. p(r|θ) the likelihood of the data r

1.2. DIC.

• DIC (Spiegelhalter et al. (2002))

D(θ) = −2 log p(r|θ).

• Concept
“goodness of fit” + “model complexity”

• Goodness of fit

D̄ = Eθ|r[D(θ)]

Date: October 21, 2014.
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• Model complexity

PD = Eθ|r[D(θ)]−D[Eθ|r(θ)]

= D̄ −D(θ̄)

• パラメータの数が分からないから、それをリスクで評価する。MCMCは使いやすい
です。by 伊庭幸人先生

2. CAPM

1. Rt the expected return
2. Rm,t the expected market portfolio return
3. rf,t the risk free rate

2.1. CAPM.

• the sensitivity of the expected excess returns on security to expected market risk
premium

• Description
ERt − rf,t = β(ERm,t − rf,t)

• Determination of β

β =
Cov(Rt − rf,t, Rm,t − rf,t)

Var(Rm,t − rf,t)

• βt should change over time
→ a smooth transition regime switching CAPM with heteroscedasticity

3. Quantile Regression

3.1. Quantile Regression.

• Koenker and Machado (1999)
MLE by assuming that the v′ts are i.i.d. skewed-Laplace distributed with unit scale

• p.d.f.

f(v; δ, τ) =
τ(1− τ)

δ
exp

{
−v

δ
(τ − (v < 0))

}
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• In the case of heteroscedasticity, Chen et al. (2009) suppose

ht = Var(vt|Ft−1).

Assume
ϵt = vt/

√
ht,

its pdf is

g(ϵt; τ) =
√

1− 2τ + 2τ2 exp
{
ϵt

√
1− 2τ + 2τ2

τ − (ϵt ≥ 0)

}
.

4. summary

(1) Bayesian inference setting

(2) Model selection with DIC

(3) Two-regime threshold quantile CAPM-GARCH model

qτ (rt) =

{
φ(1)
0 (τ) + φ(1)

1 (τ)rt−1 + β(1)(τ)rm,t, if rm,t−d ≤ c(τ)

φ(2)
0 (τ) + φ(2)

1 (τ)rt−1 + β(2)(τ)rm,t, if rm,t−d > c(τ)

ht =

{
α(1)
0 (τ) + α(1)

1 (τ)a2t−1 + λ(1)(τ)ht−1, if rm,t−d ≤ c(τ)

α(2)
0 (τ) + α(2)

1 (τ)a2t−1 + λ(2)(τ)ht−1, if rm,t−d > c(τ)
,

where
at−1 = rt−1 − qτ (rt−1).

(4) Parameter estimation



Yan LIU

Asymptotic Theory in Statistics



0.1 Convolution

Define the convolution f ∗ g as

f ∗ g(x) =
∫ ∞

−∞
f(y)g(x− y) dy. (0.1.1)

Theorem 0.1.1. Suppose f(x) ∈ L 1(x) and g(x) ∈ L 1(x). Then

h(x) := (f ∗ g)(x) ∈ L 1(x). (0.1.2)

Theorem 0.1.2. Let X and Y be two independent random variables, whose density
function is f and g. Then the density function of X + Y is f ∗ g.

note. The distribution of the sum of two random variables can be written in the form of
convolution if the two random variables are independent. Conversely, if two random vari-
ables are dependent, then joint distribution of two is required to derive the distribution
of sum.

There are many algebraic properties for convolution, which is listed below:

1. commutativity
f ∗ g = g ∗ f ; (0.1.3)

2. Associativity
f ∗ (g ∗ h) = (f ∗ g) ∗ h; (0.1.4)

3. Distributivity
f ∗ (g + h) = (f ∗ g) ∗ h; (0.1.5)

4. scalar multiplication
a(f ∗ g) = (af) ∗ g = f ∗ (ag); (0.1.6)

5. identity element
f ∗ δ = f. (0.1.7)

The calculations around convolution are:

1. integration ∫

Rd
f ∗ g(x) dx = (

∫

Rd
f(x) dx)(

∫

Rd
g(x) dx); (0.1.8)

2. differentiation
(f ∗ g)′ = f ′ ∗ g = f ∗ g′. (0.1.9)

1



0.2 Stieltjes Integral

Let f(x) and g(x) be real-valued bounded function defined on a closed interval [a, b].
Take a partition of the interval

a = x0 < x1 < · · · < xn = b. (0.2.1)

Then the Stieltjes integral is defined as

n−1∑

i=0

f(ξi)(g(xi+1)− g(xi)) (0.2.2)

with ξ ∈ [xi, xi+1]. If the sum exists uniquely as max|xi+1 − xi| → 0, then the integral
is denoted as ∫

f(x) dg(x). (0.2.3)

If f and g have a common point of discontinuity, then the integral does no exist. However,
if f is continuous and g′ is Riemann integrable over the specified interval, then

∫
f(x) dg(x) =

∫
f(x)g′(x) dx. (0.2.4)

In fact, if F1 and F2 are distribution functions, then the function F defined by

F (x) :=

∫
F1(x− y) dF2(y) (0.2.5)

is called the convolution of distribution functions F1 and F2. This is also denoted as
F = F1 ∗ F2.

2
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1. Reference

Dahlhaus (1996), Stoch. Proc. their Appl.

2. notations

2.1. Notations.

1. Xj , j ≥ 1 a stationary Gaussian sequence
2. µ mean
3. σ2f(x, θ) spectral density
4. E ⊂ Rp compact
5. X̄N = (1/N)

∑n
j=1Xj

6. Z = (X1 − X̄N , . . . , XN − X̄N )′

7. AN (θ) N ×N matrix with entries [AN (θ)]jk = aj−k(θ) below
8. W (θ) the p× p matrix with j, kth entry wjk(θ)
9. ξ = (ξ0 . . . , ξr)
10. φ = (φ0, . . . ,φq)
11. Ġ the derivative of G

3. Fundamental Setting

3.1. Locally Stationary Processes.

Definition 3.1. {Xt,T } is called locally stationary

Xt,T = µ
( t

T

)
+

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ).

3.2. Wigner-Ville spectrum.

fT (u,λ) =
1

2π

∞∑

s=−∞
Cov(X[uT−s/2],T , X[uT+s/2],T ) exp(−iλs).

Date: July 9, 2015.
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The spectrum is defined by
f(u,λ) = |A(u,λ)|2.

4. Main Results

Theorem 4.1. If Xt,T is locally stationary and A(u,λ) is uniformly Lipschitz continuous
in both components with index α > 1/2 then we have for all u ∈ (0, 1),

∫ π

−π
|fT (u,λ)− f(u,λ)|2dλ = o(1).

note. Usually, fT (u,λ) does not converge pointwise to f(u,λ).

5. words

1. rather the exception than the rule どちらかといえば例外的で

6. New knowledge

• The compensation effect in the Whittle estimator appears when the observations
Xt are pure Gaussian or linear is rather the exception than the rule!!
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1. Reference

Székely, Rizzo and Bakirov (2007), AS.

2. Definition

2.1. notations.

1. X n× p of X

2.2. Population version of OGA.

• for X ∈ Rp and Y ∈ Rq, define

akl = |Xk −Xl|p,

āk· =
1

n

n∑

l=1

akl,

ā·l =
1

n

n∑

k=1

akl,

ā·· =
1

n2

n∑

k,l=1

akl,

Akl = akl − āk· − ā·l + ā··,

k, l = 1, . . . , n.

• the empirical distance covariance Vn(X,Y )

V 2
n (X,Y ) =

1

n2

n∑

k,l=1

AklBkl.

Date: July 21, 2015.
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2 YAN LIU

• The distance covariance

V 2(X,Y ) = ∥fX,Y (t, s)− fX(t)fY (s)∥2 =
1

cpcq

∫

Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

|t|1+p
p |s|1+q

q

dtds.

• the empirical distance correlation Rn(X,Y )

R2
n(X,Y ) =

⎧
⎨

⎩

V 2
n (X,Y )√

V 2
n (X)V 2

n (Y )
, V 2

n (X)V 2
n (Y ) > 0,

0, V 2
n (X)V 2

n (Y ) = 0.

• the empirical characteristic functions

fn
X,Y (t, s) =

1

n

n∑

k=1

exp{i⟨t,Xk⟩+ i⟨s, Yk⟩}

fn
X(t) =

1

n

n∑

k=1

exp{i⟨t,Xk⟩},

fn
Y (s) =

1

n

n∑

k=1

exp{i⟨s, Yk⟩}.

3. Main Results

Theorem 3.1. If (X,Y ) is a sample from the joint distribution of (X,Y ), then

V 2
n (X,Y ) = ∥fn

X,Y (t, s)− fn
X(t)fn

Y (s)∥2.

Theorem 3.2. If E|X|p < ∞ and E|Y |q < ∞, then almost surely

lim
n→∞

Vn(X,Y ) = V (X,Y ).

Theorem 3.3. (i) If E(|X|p + |Y |q) < ∞, then

0 ≤ R ≤ 1,

and R(X,Y ) = 0 if and only if X and Y are independent.
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Theorem 3.4. Suppose that the random vectors X ∈ Rp and Y ∈ Rq have the joint
probability density function

ψX,Y (x, y) = ψX(x)ψY (y)
∑

n∈C
ρnPn(x)Qn(y),

where C denote a countable index set with a zero element. Then

V 2(X,Y ) =
1

γpγq

∑

j∈C,j ̸=0

∑

k∈C,k ̸=0

ρj ρ̄kAjkBjk,

whenever the sum converges absolutely.



INTRODUCTION TO FOURIER ANALYSIS

GEN RYU

1. Fourier series on the circle

Consider

f(ω) =
∞∑

n=0

(An cosnω +Bn sinnω),

where
∑∞

n=0(|An| + |Bn|) < ∞. The values of f determined on any interval of length 2π.
A standard choice is the interval T = (−π,π], where we identify 2π-periodic functions on R
with functions on T. The alternative way to representate it is to rewrite it in the complex
form

(1.1) f(ω) =
∞∑

n=−∞
Cne

inω.

Theorem 1.1. Suppose that
∑

n∈Z |Cn| < ∞. Then f defined by (1.1) is a continuous
function on T. The coefficients are obtained as

(1.2) Cn =
1

2π

∫ π

−π
f(ω)e−inωdω, n ∈ Z.

If g is any other L1 function on T, we have the Fourier reciprocity formula

1

2π

∫ π

−π
f(ω)g(ω)dω =

∑

n∈Z
CnD−n

where Dn is the Fourier coefficient of g, defined by (1.2) with f replaced by g. In particular
we have Parseval’s identity

1

2π

∫ π

−π
|f(ω)|2dω =

∑

n∈Z
|Cn|2.

Proposition 1.2. Suppose that
∑

n∈Z |nkCn| < ∞ for some k = 2, 3, . . . . Then f(ω) :=∑∞
−∞Cneinω is a k-times defferentiable function with f (k)(ω) =

∑
n∈Z(in)

kCneinω a con-
tinuous function.

Date: June 23, 2012.
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Corollary 1.3. The convolution of an absolutely convergent trigonometric series f with
an arbitrary L1 function g has the representation

1

2π

∫ π

−π
f(ω)g(λ− ω)dω =

∑

n∈Z
CnDne

inλ.

2. Factorial and Bessel Functions

Let Cn = 0 for n ≤ 0 and Cn = rn/n! where r ≥ 0 and n = 1, 2, . . . . Then we have

f(ω) =
∞∑

n=0

rn

n!
einθ =

∞∑

n=0

(reiθ)n

n!
= exp(reiθ),

and then
rn

n!
=

1

2π

∫ π

−π
exp(reθ) exp(−inω)dω, r ≥ 0, n = 0, 1, . . . .

Here we define I(2r) as

I(2r) =
∞∑

n=0

(
rn

n!

)2

=
1

2π

∫ π

−π
exp(2r cosω)dω, r ≥ 0.

3. integration

Whether m = n or m ̸= n
∫ π

−π
cos(mω) sin(nω) dω = 0(3.1)

When m ̸= n then
∫ π

−π
cos(mω) cos(nω) dω = 0(3.2)

∫ π

−π
sin(mω) sin(nω) dω = 0(3.3)

∫ π

0
sinmω sinnω dω = 0(3.4)

When m = n( ̸= 0) then
∫ π

−π
cos(mω) cos(nω) dω = π(3.5)

∫ π

−π
sin(mω) sin(nω) dω = π(3.6)

When m = n = 0 then ∫ π

−π
cos(mω) cos(nω) dω = 2π(3.7)

∫ π

−π
sin(mω) sin(nω) dω = 0(3.8)
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Proposition 3.1.

Proposition 3.2.

Theorem 3.3.

Theorem 3.4.

Theorem 3.5.

Definition 3.6.

Definition 3.7.

Corollary 3.8.
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1. preliminaries

1.1. notations.

1. Z3 the 3-dimensional integer lattice
2. In = {i : i ∈ Z3, 1 ≤ ik ≤ nk, k = 1, 2, 3} a rectangular region on Z3

3. i = (i1, i2, i3) a site
4. (Yj , Xj) ∈ R3, where j ∈ In a random field indexed by Z3

5. Xi = (X1i, X2i) observation
6. g : x #→ g(x) := E[Yi|Xi = x ] the spatial regression function g : R2 → R
7. φ(x) father wavelets (scaling functions)
8. ψ(x) mother wavelets
9. nπ = n1n2n3

10. fX(x) the spatial marginal density function
11. 2j0 ≃ lnnπ

12. 2j1 ≃ n1/2
π /(lnnπ)7

1.2. Translations and dilations of wavelets and related results. For j0, j, k ∈ Z,
(i) φj0k(x) = 2j0/2φ(2j0x− k)
(ii) ψjk(x) = 2j/2φ(2jx− k)

The bases for g(x1, x2) ∈ L2(R2) are given by

1. Φj0k(x1, x2) = φj0k1(x1)φj0k2(x2)

2. Ψ(1)
jk (x1, x2) = φjk1(x1)ψjk2(x2)

3. Ψ(2)
jk (x1, x2) = ψjk1(x1)φjk2(x2)

4. Ψ(3)
jk (x1, x2) = ψjk1(x1)ψjk2(x2)

Date: October 16, 2014.
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1.3. 2-variate spatial regression function g(x1, x2). Assume g belong to a subset of
Besov space Bs

p,q. For s > 0 and 1 ≤ p, q ≤ ∞,

F s
p,q(M) =

{
g; g ∈ Bs

p,q, ∥g∥Bs
p,q

≤ M, s > 2/p, supp g ⊆ [0, 1]2
}

and for k = (k1, k2), k1, k2 ∈ K = {0, 1, . . . , 2j0 − 1},

g(x1, x2) =
∑

k∈K 2

αj0kΦj0k(x1, x2) +
∑

j≥j0

∑

k∈K 2

3∑

l=1

β(l)jkΨ
(l)
jk(x1, x2)

As a result,

αj0k =

∫

[0,1]2
g(x)Φj0k(x)dx

β(l)jk =

∫

[0,1]2
g(x)Ψ(l)

j0k
(x)dx

1.4. Wavelet-based estimator. For δ satisfying δ2 = K0 lnnπ/nπ with K0 > 2C6,

ĝ(x1, x2) =
∑

k∈K 2

α̂j0kΦj0k(x1, x2) +
j1−1∑

j≥j0

∑

k∈K 2

3∑

l=1

β̂(l)jk (|β̂(l)jk | > δ)Ψ(l)
jk(x1, x2),

where

α̂j0k =
1

nπ

∑

i∈In

YiΦj0k(Xi)

fX(Xi)

β̂(l)jk =
1

nπ

∑

i∈In

YiΨ
(l)
jk(Xi)

fX(Xi)

As a result,

Eα̂j0k = αj0k

Eβ̂(l)jk = β(l)jk .

Remark 1.1. C6 is a constant from Bernstein’s inequality.

2. Main Results

Lemma 2.1 (?, Lemma 2.1).

Theorem 2.2. Let ĝ be the wavelet estimator given as above. Then, for all M ∈ (0,∞),
s < r and p, q ∈ [1,∞], there exists a constant C, which does not depend on s, p, q and
nπ, such that

sup
g∈F s

p,q(M)
E

∫

[0,1]2

(
ĝ(x)− g(x)

)2
dx ≤ C lnnπ · n−2s/(2s+2)

π .
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2.1. Notations in the proof.
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1. js = js(n) 2js ≃ n1/(2s+2)
π

2. ξi =
YiΦj0k

(Xi)
fX(Xi)

− E
YiΦj0k

(Xi)
fX(Xi)

3. η(l)i =
YiΨ

(l)
jk(Xi)

fX(Xi)
− E

YiΨ
(l)
jk(Xi)

fX(Xi)

Proof. The proof is constructed by the following 5 steps.

Step 1 E
∫
[0,1]2

(
ĝ(x)− g(x)

)2
dx = J1(j1) + J2(αj0k) + J3(j0, js) + J4(js, j1).

Step 2 (Lemma 4.7) J1(j1) = o(n−2s/(2s+2)
π ).

This is shown by Lemma 4.1 and the definition of Besov space and j1.

Step 3 (Lemma 4.8) J2(αj0k) = o(n−2s/(2s+2)
π ).

This is shown by Lemma 4.3 and the definition of j0.

Step 4 (Lemma 4.9) J3(j0, js) ≤ C lnnπ · n−2s/(2s+2)
π .

Note that J3(j0, js) = J (1)
3 + J (2)

3 + J (3)
3 . Also divide J (1)

3 into

J (1)
3 = J311 + J312 + J32.

The bound of J311 is shown by the definition of δ and js.
The bound of J312 is shown by Lemma 4.6 and the definition of j0.
The bound of J32 is shown by the definition of js.

The arguments for both J (2)
3 , J (3)

3 are the same.

Step 5 (Lemma 4.10) J4(js, j1) ≤ C lnnπ · n−2s/(2s+2)
π .

Note that J4(js, j1) = J (1)
4 + J (2)

4 + J (3)
4 . Also divide J (1)

4 into

J (1)
4 = J411 + J412 + J421 + J422.

The bound of J411 is shown by the definition of js for the case of p ≥ 2 and by the
definition of δ and js for the case of 1 ≤ p < 2.
The bound of J412 is shown by Lemma 4.6.
The bound of J421 is shown by Lemma 4.3 for the case of 1 ≤ p < 2 and by Lemma
4.3 and the definition of δ.
The bound of J422 is shown by the result of Lemma 4.4, Lemma 4.5.

The arguments for both J (2)
4 , J (3)

4 are the same.

!

2.2. Complement.

(i) Lemma 4.1 is given in Cai (1999).
(ii) Lemma 4.2 is given in Tran (1990).
(iii) Lemma 4.4 is given in Carbon et al. (1997).
(iv) Lemma 4.5 is given in Härdle et al. (1998, p.243).
(v) Lemma 4.3 is shown under Assumption (2.1) and (A1)-(A3).
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(vi) Lemma 4.6 is shown by the method of large blocks and small blocks as Tran (1990) and
Hallin et al. (2004). The result depends on Lemma 4.4 of independent approximation
and Lemma 4.5 of Bernstein’s inequality.



6 YAN LIU

3. Three Gaussian models (GWN, NR, GS)

3.1. notations.

1. ϕj an orthonormal basis in L2[0, 1]
2.
3. In = {i : i ∈ Z3, 1 ≤ ik ≤ nk, k = 1, 2, 3} a rectangular region on Z3

4. i = (i1, i2, i3) a site
5. (Yj , Xj) ∈ R3, where j ∈ In a random field indexed by Z3

6. Xi = (X1i, X2i) observation
7. g : x #→ g(x) := E[Yi|Xi = x ] the spatial regression function g : R2 → R
8. φ(x) father wavelets (scaling functions)
9. ψ(x) mother wavelets
10. nπ = n1n2n3

11. fX(x) the spatial marginal density function
12. 2j0 ≃ lnnπ

13. 2j1 ≃ n1/2
π /(lnnπ)7

3.2. classification.

(1) dY (t) = f(t)dt+ ϵdW (t), t ∈ [0, 1], 0 < ϵ < 1, f : [0, 1] → R.
(2) yj = θj + ϵξj , j = 1, 2, . . . .

(3) Yi = f(i/n) + ξi, i = 1, . . . , n, where ξ ∼ i.i.d. N (0, 1).

The three models above are respectively,

(1) Gaussian White Noise (GWN)
(2) Gaussian Sequence (GS)
(3) Nonparametric Regression (NR).

3.3. (1) → (2).

yj =

∫ 1

0
ϕj(t)dY (t),

θj =

∫ 1

0
f(t)ϕj(t)dt,

ξj =

∫ 1

0
ϕj(t)dW (t).

The other two relationships are also valid under some conditions which mainly need a
good approximation.
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3.4. Projection Estimator.

(i) n ≥ 1,
(ii) the statistic S is

f̂n(x) =
n∑

j=1

θ̂jϕj(x).

S is called a projection estimator of the regression function f at the point x.
note. In time series analysis,

x → λ,

θ̂j → γ̂(j),

ϕj(x) → eijλ.

Remark 3.1. The main difference between the trigonometric basis and wavelet bases
consists in the fact that the trigonometric bases “localizes” the function f in the frequency
domain only, while the wavelet bases “localize” it both in the frequency domain and time
domain if we interpret x as a time variable and the index j corresponds to frequency and
k characterizes position in time.
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4. words

1. synthetic 総合的な
2. exposition 説明
3. extraordinary ずばぬけた
4. preparatory 予備的な
5. an extensive literature 多方面にわたる文献
6. the references therein その中にある文献
7. for the sake of the clarity of exposition 説明のわかりやすさの為に
8. denote constants whose values are unimportant and may vary from line to line
9. circumvent 出し抜く
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1. preliminaries

1.1. notations.

1. γ a positive constant
2. f(x) the underlying probability density function
3. δ(x) the contamination probability density function related to outliers
4. g(x) the contaminated probability density function
5. fθ(x) a parametric probability density function
6. x1, . . . , xn the observations
7. θ̂ the estimator of the parameter θ
8. x∗ an outlier

1.2. preliminaries.

(i) The observations which are draw from

g(x) = (1− ϵ)f(x) + ϵδ(x).

1.3. assumptions.

νf =
{
δ(x)f(x)γ0dx

}1/γ0

is sufficiently small for an appropriately large γ0 > 0.

Remark 1.1. If δ(x) is the Dirac function at x∗, then the assumption is

νf = f(x∗).

Date: October 18, 2014.
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1.4. cross entropy.

(i) cross entropy

dγ(g, f) = − log
[{∫

g(x)f(x)γdx
}1/γ

/
{
f(x)1+γ

}1/(1+γ)
]
.

(ii) divergence

Dγ(g, f) = dγ(g, f)− dγ(g, g).

(iii) the robust estimator

θ̂γ = argmin
θ

dγ(ĝ, fθ).

(iv) the minimizer between the observation and the parametric model

θ∗γ = argmin
θ

dγ(g, fθ).

(v) the minimizer between the true model and the parametric model

θ∗ = argmin
θ

dγ(f, fθ).

(vi) Restricted parameter space

Ωνω = {θ; νfθ ≤ νω}

(vii) Another cross entropy considered by Basu et al.

mβ(g, f) = − 1

β

∫
gfβdx+

1

1 + β

∫
f1+βdx.

(viii) the estimator

θ̂(m)
β = argmaxmβ(g, fθ).
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1.5. idea. Hope for robust parameter estimation that the bias θ∗γ − θ∗ is sufficiently small.
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2. Main Results

Theorem 2.1 (?, Theorem 3.2). Suppose

ν = max{νf , νh}.

Then

Dγ(g, h)−Dγ(g, f)−Dγ(f, h) = O(ϵνγ).

Proof. Note that

dγ(f, h)− dγ((1− ϵ)f, h) =
1

γ
log(1− ϵ) +O(ϵνγh).

!

Remark 2.2. (i) If γ is too small, then νγ not small.

Theorem 2.3 (?, Theorem 3.3). Suppose

θ ∈ Ωνω .

Then

θ∗γ = θ∗ +O(ϵνγ).

Theorem 2.4 (?, Theorem 5.1).
√
n
(
θ̂γ − θ∗γ

)
→ N (0,Σg(θ

∗
γ)),

where

Σg(θ) = Jg(θ)
−1Ig(θ)Jg(θ)

′−1.

Here,

Jg(θ
∗
γ) = (1− ϵ)Jf (θ

∗) +O(ϵνγ),

Ig(θ
∗
γ) = (1− ϵ)If (θ

∗) +O(ϵνγ).

Theorem 2.5 (?, Theorem 6.1). Under the cross entropy

d(g, f) = ψ
(∫

gχ(f)dx,

∫
ρ(f)dx

)
,

where ψ(u, v), χ(s) and ρ(s) are twice differentiable real-valued functions. Further assume:

(i) d(λg, f) is uniquely minimized at f = g for any λ > 0, the Hessian is positive-definite.
(ii) χ(0) = 0
(iii) {sχ′(s)}′ > 0 ?

Then there exists a monotone increasing real-valued function φ such that

d(g, f) = φ(dγ(g, f)).
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3. Comment in the paper

We expect the robust estimate to have a small bias when the influence function is
redescending, but this is not always clear in the case of heavy contamination. This paper
clearly shows that the robust estimate θ̂γ has a small bias even in the case of heavy
contamination.

We often suppose that ϵ < 1/2. Some results obtained in this paper seem to hold even
for ϵ ≥ 1/2. This is not unreasonable because the underlying density f is always the object
in interest in this paper.

One of the remaining problem is how to set a tuning parameter γ. Basu et al. said that
there could be no universal way of selecting an appropriate tuning parameter when we used
the cross entropy. They persisted in given priority to either robustness or efficiency.

⇒ Future Work.
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1. definitions

1.1. somewhere parametrically efficiency. A method is called somewhere parametri-
cally efficient if it is efficient in the parametric model induced by some f0. If the method
is not parametrically efficient at some f0, but at any f , then it is called parametrically
efficient.

1.2. somewhere semi-parametric efficiency. Methods that are semi-parametrically
efficient at some f0 are called somewhere semi-parametrically efficient, and a method that
is semi-parametrically efficient at any f is simply called semi-parametrically efficient.

1.3. adaptive. The parametrically efficient method is also called adaptive. When the
parametric and semi-parametric lower bounds coincide at some f0, the model is called
somewhere adaptive. If the two bounds coincide for all f , the model is called adaptive.

2. assumptions

Assumption 2.1 (Assumption A). For any bounded sequence (τn) in Rk, we have

dP (n)
θ0+τ/

√
n,φ0

dP (n)
0

Date: May 15, 2012.
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Part 1. Definitions

1. unimodality

1.1. the definition.

Definition 1.1. If − log f(x) is a convex function within some open interval (a, b) such

that −∞ ≤ a < b ≤ ∞ and
∫ b
a f(x) = 1, the density f(x) is called strongly unimodal.

Such densities are absolutely continuous within (a, b) and

[− log f(x) ]′ = −f ′(x)

f(x)

is a non-decreasing function. Another interpretation of unimodality is that a unimodal
probability distribution is a probability distribution which has a single mode. A mode of
a discrete probability distribution is a value at which the probability mass function takes
its maximum value. On the other hand, a mode of a continuous probability distribution is
a value at which the probability density function attains its maximum value.

The unimodality is also defined in the way that the cdf of the distribution is convex for
x < m and concave for x > m.

1.2. Properties of unimodality.

• A first important result is Gaussian’s inequality; Gaussian’s inequality gives an
upper bound on the probability that a value lies more than any given distance
from its mode.

• Another result is Vysochanskii-Petunin inequality. The inequality is a extension of
Chebychev’s inequality, and it is more accurate than than the latter.

Theorem 1.2. A convolution of two strongly unimodal densities is again a strongly uni-
modal densities.

Lemma 1.3. If f(x) is strongly unimodal, then ϕ(u, f)(≡ −f ′(F−1(u))
f(F−1(u)) ) is non-decreasing.

Corollary 1.4. The density of Stable is unimodal.

Date: May 15, 2012.
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2. Gaussian log-likelihood and Green’s function p.10

The Green’s function associated with ∆(n)
G;θ is characterized by

(
1−

p∑

i=1

θiz
i

)−1

≡
∞∑

u=0

gu(θ)z
u |z| < 1.

Using the notation, the asymptotic covariance matrix ΓG(θ) is the autocovariance matrix

of order p of the stationary AR(p) solution of ∆(n)
G;θ under standard normal innovations,

and is denoted by

ΓG(θ) =

( ∞∑

u=0

gu(θ)gu+|i−j|(θ)

)
,

which the term in the parentheses is the (i,j) element.

Part 2. Optimal testing for semi-parametric AR models

Let (X−p+1, . . . , X0, X1, . . . , Xt, . . . , Xn)′ be an observed series of length n+p. Through-
out the paper, we assumer that X(n) = (X1, . . . , Xn)′ satisfies the stochastc difference
equation (AR(p) model)

Xt −
p∑

i=1

θiXt−i = ϵt, t = 0,±1,±2, . . . ,

where {ϵt}, t = 0,±1,±2, . . . is an i.i.d. sequence with mean zero antdprobability density
f .

It is also assumed that the parameter θ = (θ1, . . . , θp)′ ∈ Rp is such that all the roots of
the characteristic polynomial

θ(z) = 1−
p∑

i=1

θiz
i, z ∈ C

lie out side the unit disk.

3. linear hypotheses

The null hypotheses we are interested in are the linear hypotheses, under which θ belongs
to some linear restriction of Θ or, equivalently, satisfies some given set of linear constraints.
Such hypotheses are characterized by a p × r matrix Ω, of full rank r ≤ p, and by an
element θ0 of Rp: denoting by M(Ω) the r-dimensional linear subspace of Rp spanned by
the columns of Ω, we consider the hypothesis under which θ − θ0 belongs to Θ ∩M(Ω),
and thus satisfies a set of p − r linearly independent linear constraints on θ. we tacitly
assume that either θ0 = 0, or θ0 ∈ Rp \M(Ω).
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3.1. Explanation. Here, Θ and M(Ω) is p-dimensional subspace of Rp. You can see that
M(Ω) is a space of linear map, and the easy way to understand is to think

Ω′(θ − θ0) ∈ Rr.

This means that the strain is given by Ω and Ω′θ0. The virtue of this representation is
that Ω′(θ − θ0) is ??.

3.2. Hypothesis. we denote by H(n)
f (θ0;Ω) the linear hypothesis characterized by θ0 and

Ω. This is a representation depending on the density f in a semi-parametric model. We
will overcome this obstacle by using notation as

H(n)(θ0;Ω) = {P (n)
f ;θ | f ∈ F ;θ − θ0 ∈ Θ ∩M(Ω)} =

⋃

f∈F
H(n)

f (θ0;Ω)

4. sample splitting devise

Let the number of the observations Zt(θ) be 2n. Split the sample into the two groups
half and half. Then estimate f from the sample in each group and use the estimated f̂
to compute the central sequence for the other group. The statement can be shown as the
splits respectively,

n−1/2
2n∑

t=n+1

φ
f̂
(n)
1

(Zt(θ))Wt−1;

n−1/2
n∑

t=1

φ
f̂
(n)
2

(Zt(θ))Wt−1.

5. assumptions and theorems

5.1. Sets of assumptions.

(A1) f(x) > 0, x ∈ R;
∫∞
−∞ xf(x) dx = 0;

∫∞
−∞ x2f(x) dx = σ2 < ∞;

(A2) f is absolutely continuous on finite intervals, i.e., there exists ḟ such that for all

−∞ < a < b < ∞, f(b)− f(a) =
∫ b
a ḟ(x) dx;

(A3) letting φf ≡ − ḟ
f , the generalized Fisher information

∫∞
−∞ φ2

f (x)f(x) dx ≡ If =

σ−2If1 is finite.
(A4) the score function φf is piecewise Lipschitz, i.e., there exist a finite partition of R

into nonoverlapping intervals J1, . . . , Jk and a constant Af such that

|φf (x)− φf (y)| ≤ Af |x− y| ∀x, y ∈ Ji, ∀i = 1, . . . , k.

(A5) f is strongly unimodal, i.e., φf is monotone increasing.

note. All stable densities are unimodal. note2. (A5) ⇒ (A2).
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5.2. Interpretation of the assumptions.

(A1)—(A3) The LAN result holds under these assumptions;
(A4) This assumption induces that the influence of starting values on residual autocor-

relations is to be asymptotically negligible.
(A5) This assumption is given meaning to by the Proposition below.

The more general assumption to have the initial joint distribution to be negligible is given
in Kreiss (1987).

Proposition 5.1. Let the densities f and g both satisfy assumptions (A1)-(A3); assume

moreover that f satisfies (A5). Then, under H(n)
g (θ), as n → ∞,

r(n)f ;u(θ) =

{
(n− u)−1

n∑

t=u+1

φf1 ◦ F−1
1 (G(ϵt))F

−1
1 (G(ϵt−u))

}
/I1/2

f1
+ oP (n

−1/2)

with G(x) ≡
∫ x
−∞ g(z) dz.

Corollary 5.2. Let the densities f and g both satisfy assumptions (A1)-(A3); assume

moreover that f satisfies (A5). Then, under H(n)
g (θ), as n → ∞, any k-tuple

(
(n− i1)

1/2r(n)f ;i1
(θ), . . . , (n− ik)

1/2r(n)f ;ik
(θ)
)′

is asymptotically N (0, Ip×p).

5.3. theorems for adaptive rank tests.

Proposition 5.3. Assume that f and g both satisfy (A1)-(A4); assume that f moreover
satisfies (A5). For all τ = (τ1, . . . , τp) ∈ Rp, consider the sequence au(τ ;θ) characterized
by

∞∑

u=1

au(τ ;θ)z
u ≡

∑p
i=1 τiz

i

1−
∑p

i=1 θiz
i
= (

p∑

i=1

τiz
i)(

∞∑

u=0

gu(θ)z
u), |z| < 1.

Then,

n1/2[ r(n)f ;u(θ̂
(n))− r(n)f ;u(θ) ] = σ(f ; g)I(f ; g)(If1)−1/2au(n

1/2(θ̂(n) − θ);θ)) + oP (1)

and

∆
(n)

f ;θ̂(n) −∆
(n)
f ;θ = σ(f ; g)I(f ; g)(If1)ΓG(θ)n

1/2(θ̂(n) − θ) + oP (1)

under H(n)
g (θ), as n → ∞, where

σ(f ; g) ≡
∫ 1

0
F−1
1 (u)G−1

1 (u) du

and

I(f ; g) ≡
∫ 1

0
φf1(F

−1
1 (u))φg1(G

−1
1 (u)) du;

ΓG(θ) and If are defined in (5) and (1), respectively.
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note. From this proposition, neither r̄(n)f ;u(θ̂
(n)) nor ∆̄(n)

f ;θ̂(n)
are asymptotically invariant,

since the right-hand sides of equations both depend on the unspecified under lying density
g.

After the proposition above, we can have a more general statement as follows.

Proposition 5.4. Let the assumption of Proposition 5.2 be satisfied. Suppose that the
estimator f̂ (n) of f1 is based on the order statistics of the residuals Zt(θ) and is consistent
in the sense that

Ef1

⎧
⎨

⎩

[
φf1 ◦ F−1

1

(
R(n)

t

n+ 1

)
F−1
1

(
R(n)

t−u

n+ 1

)
− φf̂ (n) ◦ (F̂ (n))−1

(
R(n)

t

n+ 1

)
(F̂ (n))−1

(
R(n)

t−u

n+ 1

)]2 ∣∣∣f̂ (n)

⎫
⎬

⎭

= oP (1),

where F̂ (n) denotes the distribution function associated with f̂ (n). Then, under H(n)
f (θ),

r(n)
f̂ (n);u

(θ) = r(n)f ;u(θ) + oP (n
−1/2).

Part 3. Reference

• Optimal testing for semi-parametric AR models from Gaussian Lagrange Multipli-
ers to Autoregression Rank Scores and Adaptive Tests (2006)

• Unimodality wikipedia
• Theory of Rank tests
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1. ARMA Model

The process {Xt; t ∈ Z} which satisfies

Xt −
p∑

i=1

aiXt−i = et +
q∑

i=1

biet−i for all t ∈ R,

are concerned in the paper. Denote the density function of et by f(x), and the common
distribution of (e1−q, . . . , e0;X1−p, . . . , Xn) by gn(·; θ), where θ ∈ Θ is the underlying pa-
rameter.

note. one can see that

gn(·; θ) = g0(e1−q, . . . , e0;X0; θ)
n∏

t=1

f(et{e1−q, . . . , Xt}),

where

et{e1−q, . . . , Xt} =
t∑

k=1

βk−1

(
−

p∑

i=0

aiXt+1−k−i

)
+

q−1∑

s=0

e−s

(
s∑

k=0

βt+s−kbk

)
.

Date: May 19, 2012.
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note2. Using the representation of the common distribution above and Lemma 2.2 in
Appendix, we have

dPn,θ

dPn,θ0
=

g0(e1−q, . . . , X0; θ)

g0(e1−q, . . . , X0; θ0)

n∏

j=1

f(e0j − (θ − θ0)′Z(j − 1; θ, θ0))

f(e0j )
.

With the following additional abbreviation,

φ2
j (θ0, θ) =

f(ej(θ0)− (θ − θ0)′Z(j − 1; θ, θ0))

f(ej(θ0))
,

we have

log
dPn,θ

dPn,θ0
= log

g0(e1−q, . . . , X0; θ)

g0(e1−q,...,X0 ; θ0)
+ 2

n∑

j=1

log φj(θ0, θ).

2. Definitions

2.1. LAN. The LAN property here is defined the same as Fabian and Hannan(1982). LAN
⟨θ,Mn, γn⟩ holds if, for each n ∈ Z, θ ∈ Θn, Mn is a k × k positive definite matrix, γn a
k-dimensional random vector on Xn such that

Eγn
n,θ

d−→ N .

and if, for each bounded sequence ⟨tn⟩ ⊂ Rk, δn = θ +M−1/2
n tn is eventually in Θn, and

gn ∈ dEn,δn/dEn,θ

implies
gn/ρtn(γn) → 1 in ⟨En,θ⟩-prob.

Here, N denotes the integral with respect to the normal (0, I), and ρt(x) = et
′x−||t||2/2.

note. The convergence in distribution at first shows the normality and the statement under
the convergence in distribution shows the two density is contiguity.

2.2. LAM. [Fabian and Hannan(1982) page 463] If Condition LAN ⟨θ,Mn, γn⟩ holds then
⟨Zn⟩ is LAM(θ) (locally asymptotically minimax at θ) if ⟨Zn⟩ is a sequence of estimates
for which

lim
k→∞

lim
n→∞

sup
||M1/2

n (δ−θ)||≤K

En,δl(QnM
1/2
n (Zn − δ)) = N l

holds for every sequence ⟨Qn⟩ in the collection of all orthogonal k × k matrices and for
every bounded loss function l on Rk.

Definition 2.1. A sequence ⟨Zn⟩ of estimates is called regular(θ) if

M1/2
n (Zn − θ)− γn → 0 in ⟨En,θ⟩-prob.

note. γn is the part which converges to the standard normal distribution in the LAN.
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Theorem 2.2. Let ⟨Zn⟩ be a sequence of estimates. Then the regularity(θ) of ⟨Zn⟩ implies

EM
1/2
n (Zn−δn)

n,δn
⇒ N

for every sequence δn = θ+M−1/2
n tn such that ⟨tn⟩ is bounded; the latter property, in turn,

implies that ⟨Zn⟩ is LAM (θ).

2.3. Discrete sequences of estimators. [Bickel(1982)] The discrete sequences of estima-
tors {θ̄n} satisfies that θ̄n is given by one of the vertices of {θ : θ = n−1/2(i1, . . . , ip+q), ij ∈
Z} nearest to θn, which is a sequence with

√
n(θn − θ0) is bounded by a constant c > 0.

This idea is due to Le Cam(1960), (1969), (1970) for construction of an efficient estima-
tor.

Theorem 2.3. If P = {Pθ; θ ∈ Θ} is a regular parametric model on a Euclidean space X
and θ is identifiable, then there exist uniformly

√
n-consistent estimates of θ.

The steps are as follows:

(1) Construct θ̃n uniformly
√
n-consistent as in theorem 2.3 below.

(2) Form a grid of cubes with sides of length cn−1/2 over Rk, given θ̃n, define θ∗n to be
the midpoint of the cube into which θ̃n fallen. (This means that θ∗n is also uniformly√
n consistent.)

(3) Define

θ̂n = θ∗n + n−1
n∑

i=1

I−1(θ)l̇(Xi, θ
∗
n).

Theorem 2.4. If P is a regular parametric model and if there exists a uniformly
√
n-

consistent estimator θ̃n of θ, then the estimator θ̂n given above is a uniformly efficient
estimator of θ.

note. It is important for the result above that the sample space is Euclidean.
note2. The result is also important since even if the maximum likelihood estimate θ̂n does
not exist, we can define a one-step Newton-Raphson approximate ’solution’ by

θ̂approxn = θ̃n +

[
− 1

n

n∑

i=1

l̈(Xi, θ̃n)

]−1
1

n

n∑

i=1

l̇(Xi, θ̃n).

Part 1. Local asymptotic normality for ARMA process

3. Assumptions

3.1. Assumption for stationary and invertibility and etc.

(S1) The polynomials A(z) = 1 +
∑p

i=1−aizi and B(z) = 1 +
∑q

i=1 biz
q have no zeros

with magnitude less or equal to one.
(S2) The two polynomials have no zeros in common and ap ̸= 0 or bq ̸= 0.
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3.2. Assumptions for LAN.

(A1) f(x) > 0, x ∈ R;
∫∞
−∞ xf(x) dx = 0;

∫∞
−∞ x2f(x) dx = σ2 < ∞;

(A2) f is absolutely continuous on finite intervals, i.e., there exists ḟ such that for all

−∞ < a < b < ∞, f(b)− f(a) =
∫ b
a ḟ(x) dx;

(A3) letting φf ≡ − ḟ
f , the generalized Fisher information

∫∞
−∞ φ2

f (x)f(x) dx ≡ If =

σ−2If1 is finite.
(A4) the score function φf is piecewise Lipschitz, i.e., there exist a finite partition of R

into nonoverlapping intervals J1, . . . , Jk and a constant Af such that

|φf (x)− φf (y)| ≤ Af |x− y| ∀x, y ∈ Ji, ∀i = 1, . . . , k.

(A5) f is strongly unimodal, i.e., φf is monotone increasing.
(A6) g0(e0,X0, θn) → g0(e0,X0, θ0), in Pθ0-probability if θn → θ.
(A7) There exists a sequence {θ̄n} of estimators which satisfies

√
n(θ̄n − θ0) = OPθ0

(1).

(A8) ϕ̇ is assumed to satisfy

lim
h→0

∫
{ϕ̇(x+ h)− ϕ̇(x)}2f(x) dx = 0,

lim
h→0

∫
ϕ̇(x+ h)− ϕ̇(x)

h
f(x) dx = −1

2
I(f).

(A9) In order to construct the adaptive estimator, the following conditions on the den-
sities f are required: ∫

x4f(x) dx < ∞,

and f is symmetric about the origin.

note. All stable densities are unimodal. note2. (A5) ⇒ (A2).

3.3. Interpretation of the assumptions.

(A1)—(A3) The LAN result holds under these assumptions;
(A4) This assumption induces that the influence of starting values on residual autocor-

relations is to be asymptotically negligible. In other words, it can be shown that

Eθ|∆n(θ)− ∆̂n(θ) | = o(1)

holds true, where

∆̂n(θ) :=
2√
n

n∑

j=1

ϕ̇(êj(θ))
j∑

k=1

βk−1

(
Y (j − k)
Ê(j − k; θ)

)
,

and

êt :=
t∑

k=1

βk−1(Xt+1−k − a1Xt−k − · · ·− apXt+1−k−p).
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(A5) This assumption is given meaning to by the Proposition below(in Hallin&Werker
part).

(A6) It is necessary to assume the convergency of the initial observation.
(A7) The existence of

√
n-consistent initial estimators {θ̄n} is assumed to construct reg-

ular estimates. In fact, (A7) holds for estimators for which the usual CLT is valid,
i.e., for all the standard estimators.

As an example in Anderson(1971), consider AR model as follows:

(3.1) yt +Byt−1 = ut.

or

(3.2) yt + β1yt−1 + · · ·+ βpyt−p = ut.

Under the assumption (A.1) below, we can write the process as

yt =
∞∑

s=0

(−B)sut−s, t = . . . ,−1, 0, 1, . . . .

Let F be the sample variance, then it can be written in the form like

F = Eyty
′
t =

∞∑

s=0

(−B)sΣ(−B′)s.

Also define F̃ as

F̃ =
∞∑

s=0

B̃sΣ̃B̃′s,

where

Σ̃ =

(
σ2 0′

0 O

)
, B̃ =

⎛

⎜⎜⎜⎜⎝

β1 β2 β3 · · · βp
−1 0 0 · · · 0
0 −1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎠
.

Assuming conditions in the set 1 and set 2 respectively below,
(A.1) {yt} is a sequence of random vectors satisfying (3.1) with {ut} independently

and identically distributed with Eut = 0 and Eutu′
t = Σ;

(A.2) −B has all characteristic roots less than 1 in absolute value;
(A.3) F is positive definite;
(A.1)’ {yt} is a sequence of random vectors satisfying (3.2) with {ut} independently

and identically distributed with Eut = 0 and Eu2t = σ2;
(A.2)’ The roots of the associated polynomial equation are less than 1 in absolutely

value,
then we have theorems which give the estimators satisfing the assumption(A7).

Theorem 3.1. Under the set 1 of assumptions,
√
T (B̂′−B′) has a limiting normal

distribution with mean 0 and covariance matrix F−1 ⊗Σ.
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Theorem 3.2. Under the set 2 of assumptions,
√
T (β̂−β) has a limiting normal

distribution with mean 0 and covariance matrix σ2F̃−1.

Instead of (A.1) or (A.1)’, the result holds true even if we assume
(A.1)” E|uit |2+ϵ < m, i = 1, 2, . . . , p, t = 1, 2, . . . , for some ϵ > 0 and some m.

In conclusion, such estimators satisfying assumption (A7) exist under moment
conditions.

(A8) This is the definition of regularity on the model P , which guarantees the L2-
continuity of ϕ̇ and the existence of it.

(A9) This is a condition for Theorem 5.7 to be true.

4. Theorems

The LAN property is established for ARMA model by using the assumptions of Rous-
sas(1979). Similar conditions sufficient for the LAN property are given in Swensen(1985).

Theorem 4.1 ((K-Theorem 3.1)LAN property for ARMA models). Let {hn} ⊂ Rp+q be
a bounded sequence and θn = θ0 + n−1/2hn. Under our assumptions (A1)–(A4) and (A6),
we have for

∆n(θ) =
2√
n

n∑

j=1

ϕ̇(ej(θ))Z(j − 1; θ, θ), ϕ̇ = −f ′/2f,

the following two results:

log[ dPn,θn/dPn,θ0 ]− hTn∆n(θ0) +
1

2
hTn I(f)Γ(θ0)hn → 0,

in Pn,θ0-probability, where Γ(θ0) is defined in Theorem 3.5 below (approximation of the
log-likelihood ratio).

L(∆n(θ0)|Pn,θ0) ⇒ N (0, I(f)Γ(θ0)),

where ”⇒” denotes weak convergence (asymptotic normality of the approximating statistic).

Corollary 4.2. Under the same assumption as above {Pn,θ0} and {Pn,θn} are contiguous
in the sense of Definition 2.1, Roussas (1972), page 7, and

L(∆n(θ0)− I(f)Γ(θ0)hn|Pn,θn) ⇒ N (0, I(f)Γ(θ0)).

5. The sufficient conditions for local asymptotic normality

The 4 theorems below guarantee that the sufficient conditions for the LAN in Roussas
(1979) are fulfilled.

Theorem 5.1. For each θ0 ∈ Θ, the random functions φj(θ0, ·) are differentiable in q.m.
[Pθ0 ] uniformly in j ≥ 1. That is, there are (p+q)-dimensional r.v.’s φ̇j(θ0) = ϕ̇(e0j )Z(j−
1; θ0, θ0) = ϕ̇(e0j )Z

0(j−1) [the q.m. derivative of φj(θ0, θ) with respect to θ at θ0] such that

φj(θ0, θ0 + λh)− 1

λ
− hT φ̇j(θ0) → 0, in q.m. [Pθ0 ] as λ → 0
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uniformly on bounded sets of h ∈ Rp+q and uniformly in j ∈ N. Finally, φ̇j(θ0) is measur-
able with respect to Aj.

Theorem 5.2. For each θ0 ∈ Θ and each h ∈ Rp+q, the sequence {(hT φ̇j(θ0))2}, j ∈ N, is
uniformly integrable with respect to Pθ0.

Theorem 5.3. For each θ0 ∈ Θ and j ≥ 1 let the (p+ q)× (p+ q)-dimensional covariance
matrix Γj(θ0) be defined by

Γj(θ0) = 4Eθ0 [ φ̇j(θ0)φ̇
T
j (θ0) ] = I(f)Eθ0 [Z(j − 1; θ0, θ0)Z

T (j − 1; θ0, θ0) ].

Then Γj(θ0) → Γ(θ0)I(f), as j → ∞, in any one of the standard norms in Rp+q, and Γ(θ0)
is positive definite.

Theorem 5.4. (i) For each θ0 ∈ Θ, each h ∈ Rp+q and for the probability measure Pθ0,
the WLLN holds for the sequence {[hT ϕ̇j(θ0) ]2, j ∈ N}. Also
(ii)

1

n

n∑

j=1

{Eθ0 [ (h
T φ̇j(θ0))

2|Aj−1 ]− [hT φ̇j(θ0) ]
2} → 0, as n → ∞,

in Pθ0-probability.

Part 2. Existence and construction of LAM estimates

Lemma 5.5 (K-Lemma 4.1). Under assumptions (A1)–(A3) and (A6), we have for any
sequence {Zn} of estimates the following implication:

√
n(Zn − θ0)−

Γ(θ0)−1

I(f)
∆n(θ0) = oPθ0

(1) ({Zn} is called θ0-regular)

implies that {Zn} is LAM.

Theorem 5.6 (Existence of LAM estimators). Assume {θ̄n} ⊂ Θ is discrete and
√
n-

consistent for θ0 ∈ Θ. Then θ̂n defined below is regular:

θ̂n = θ̄n +
1√
n

Γ̂n(θ̄n)−1

I(f)
∆n(θ̄n),

Γ̂n(θ) =
1

n

n∑

j=1

Z(j − 1; θ, θ)ZT (j − 1; θ, θ).

Part 3. Construction of adaptive estimates

Theorem 5.7. Let {θ̄n} ⊂ Θ be a discrete and
√
n-consistent sequence of estimators of

θ0. Under our assumptions (A1)–(A3),(A6)–(A9) and

∆̃n(θ̄n)−∆n(θ̄n) = oPθ0
(1)

holds, if cn → ∞, gn → ∞, σ(n) → 0, dn → 0, σ(n)cn → 0, gnσ(n)−4/n → 0 and nσ(n)
stays bounded.
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6. Summary

The parameter θ0(the coefficients in ARMA model) are considered in ARMA model with
independent and identically, but not necessary normally distributed errors. LAN is proven
in this general model where the sample is not i.i.d. Under the adequate conditions, the
LAM(Locally asymptotically minimax) estimators are proposed, and strongly adaptive
estimators are obtained. The approach is exactly the starting point of semi-parametric
method in ARMA models, which Hallin&Werker(2003) follows later on.

7. Appendix

7.1. Formulas.
βs + b1βs−1 + · · ·+ bqβs−q = 0 for ∀s ≥ 1.

(1 + b1L+ · · ·+ bqL
q)−1 =

∞∑

k=0

βkL
k.

ej =
j∑

k=1

βk−1

(
−

p∑

i=0

aiXj+1−k−i

)
+

q−1∑

s=0

e−s

(
s∑

k=0

βj+s−kbk

)
.

∞∑

k=j+1

βk−1

(
q∑

i=0

biej+1−k−i

)
=

q−1∑

s=0

e−s

(
s∑

k=0

βj+s−kbk

)
.

j∑

k=1

βk−1

(
q∑

i=0

biej+1−k−i

)
= ej+1−k −

q−1∑

s=0

e−s

(
s∑

k=0

βj+s−kbk

)
.

p∑

i=0

a0iXt−i =
q∑

i=0

b0i et−i(θ0).

7.2. Lemmas.

Lemma 7.1 (K-Lemma 2.2). With

Z(j − 1; θ, θ0) =
j∑

k=1

βk−1(θ)(Xj−k, . . . , Xj−k+1−p; e
0
j−k, . . . , e

0
j−k+1−q)

′

=
j∑

k=1

βk−1(θ)(Y
′(j − k);E(j − k; θ0)

′)′,

ej(θ0)− ej(θ) = (θ − θ0)
′Z(j − 1; θ, θ0)

holds true.



SUMMARY OF HOSOYA-TANIGUCHI(1982)

GEN RYU

1. models and notations

1.1. Scalar linear processes.

(1.1) x(n) =
∞∑

j=0

aj(θ)e(n− j), n ∈ Z

We define IX(ω) and f(ω) for (1.1).

(1.2) IX(ω) = (2πn)−1

∣∣∣∣∣

n∑

t=1

x(t)eitω

∣∣∣∣∣

2

(1.3) f(ω) =
1

2π

∞∑

h=−∞
Γ(h)eihω

1.2. Vector linear processes.

z(n) =
∞∑

j=0

Gj(θ)e(n− j), n ∈ Z(1.4)

(s ∗ 1) = (s ∗ p) ∗ (p ∗ 1)(1.5)

We define IX(ω) and f(ω) similarly for (1.2).

2. history

Discoverer and Year Model θ̂

Whittle(1962) scalar;e(n) ∼ i.i.d(0,σ2)
∫ π
−π

IX(ω)
fθ(ω)

dω

Walker(1964) Hannan(1973) σ2 depends on θ

Hosoya(1974) same to the above
∫ π
−π log fθ(ω) +

IX(ω)
fθ(ω)

dω

Hannan(1976) Dunsmuir(1976,1979) vector;e(n) ∼ i.i.d(0,K(θ)) 2π log detK(θ) +
∫ π
−π tr{fθ(ω)

−1IX(ω)}dω
Table 1. Transition of the estimators

Date: September 2, 2011.
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In Hosoya-Taniguchi(1982), a criterion is proposed as follows.

(2.1) D(ft, f) =

∫ π

−π
log det ft(ω) + tr{ft(ω)−1f(ω)}dω

3. theorems

Here, the model is vector-valued and is represented by

(3.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(n) =
∞∑

j=0

G(j)e(n− j), n ∈ Z

(s ∗ 1) (s ∗ p) (p ∗ 1)

E{e(n)} = 0

E{e(m)e(n)′} = δ(m,n)K

In the paper, an assumption is assumed throughout.

Assumption 3.1.

(3.2)
∞∑

j=0

trG(j)KG(j)′ < ∞.

Under this assumption, the process {z(n)} is a second-order stationary process. The spectral
density matrix of the process is shown as

(3.3) f(ω) =
1

2π
k(ω)Kk(ω)∗, −π ≤ ω ≤ π.

Theorem 3.2. {x(t)}: zero-mean second-order stationary process. Ft ≡ Fx
t .

Assumptions:

(1) ∀ϵ > 0,Var{E(xα(t+ τ)|Ft)} = O(τ−2−ϵ) uniformly in t, for α = 1, . . . , p.
(2) ∀l,m > t, ∀η > 0,

E|E{xα(l)xβ(m)|Ft)}−E{xα(l)xβ(m)}| = O[{min(|l− t|, |m− t|)}−1−η] uniformly
in t, for α = 1, . . . , p.

(3) Any element of f(ω) = {fαβ(ω);α,β = 1, . . . , p} is continuous at the origin; f(0)
is non-degenerate.

Result: ξN = N− 1
2
∑N

n=1 x(n) → N(0, 2πf(0)).

Theorem 3.3. B ≡ Be(t).
Assumptions:

(1) ∀β1,β2,m, ∀ϵ > 0,
Var[E{eβ1(n)eβ2(n+m)|B(n− τ)}− δ(m, 0)Kβ1β2 ] = O(τ−2−ϵ) uniformly in n.

(2) ∀η > 0,
E|E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)|B(n1−τ)}−E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)}| =
O(τ−1−η), uniformly in n1, where n1 ≤ n2 ≤ n3 ≤ n4.
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(3) fββ are square-integrable.
(4)

∑∞
j1,j2,j3=infty |Qe

B1...B4
(j1, j2, j3)| < ∞.

Results:

(1)
√
N{CZ

α1α2
(m)− γZα1α2

(m)} → N(0, ...)

(2)

Cov(
√
N{CZ

α1α2
(m1)− γZα1α2

(m1)},
√
N{CZ

α3α4
(m2)− γZα3α4

(m2)})

→ 2π

∫ π

−π
[fα1α3(ω)f̄α2α4(ω) exp{−i(m2 −m1)ω}+ fα1α4(ω)f̄α2α3(ω) exp{i(m1 +m2)ω}] dω

+ 2π
p∑

β1,...,β4=1

∫ ∫ π

−π
exp{im1ω1 + im2ω2)}kα1β1(ω1)

kα2β2(−ω1)kα3β3(ω2)kα4β4(−ω2)Q̃
e
β1...β4

(ω1,−ω2,ω2) dω1dω2

Lemma 3.4. D(fT (f), f) = mint∈ΘD(ft, f).
Assumptions:

(1) Θ : (⊂ Rq) compact.
(2) θ1 ̸= θ2 ⇒ fθ1 ̸= ftheta2.
(3) fθ(ω): positive definite.
(4) fθ(ω) is continuous w.r.t θ,ω.

Results:

(1) ∀f ∈ P , ∃T (f) ∈ Θ s.t. D(fT (f), f) = mint∈ΘD(ft, f).
(2) T(f): unique, T (fN ) →ω f =⇒ as N → ∞, T (fN ) →ω f.
(3) ∀θ ∈ Θ, T (fθ) = θ.

Theorem 3.5. ∃1T (f) ∈ Θ◦ ;

Mf =

∫ π

−π

[
∂2

∂θ∂θ′
tr{ft(ω)−1f(ω)}+ ∂2

∂θ∂θ′
log det fθ(ω)

]

θ=T (f)

dω,

where Mf is nonsingular matrix.
Assumptions:

(1) ∀β1,β2,m, ∀ϵ > 0,
Var[E{eβ1(n)eβ2(n+m)|B(n− τ)}− δ(m, 0)Kβ1β2 ] = O(τ−2−ϵ) uniformly in n.

(2) ∀η > 0,
E|E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)|B(n1−τ)}−E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)}| =
O(τ−1−η), uniformly in n1, where n1 ≤ n2 ≤ n3 ≤ n4.

(3) fββ are square-integrable.
(4)

∑∞
j1,j2,j3=infty |Qe

B1...B4
(j1, j2, j3)| < ∞.

(5) f(ω) ∈ Lip(α) where α > 1
2 .

Results:

(1) p-limN→∞T (Iz) = T (f).
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(2) as N → ∞,
√
N{T (Iz)− T (f)} → N(0,M−1

f Ṽ M−1
f ). where

Ṽjl = 4π

∫ π

−π
tr

[
f(ω)

∂

∂θj
{ft(ω)}−1f(ω)

∂

∂θl
{ft(ω)}−1

]

θ=T (f)

dω

+ 2π
s∑

r,t,u,v=1

∫ ∫ π

−π

{
∂

∂θj
f (r,t)
θ (ω1)

∂

∂θl
f (u,v)
θ (ω2)

}

θ=T (f)

Q̃z
rtuv(−ω1,ω2,−ω2) dω1dω2,

where f (r,t)
θ (ω) is the (r,t) element of {fθ(ω)}−1.

Corollary 3.6.

Ṽjl = 4π

∫ π

−π
tr

[
f(ω)

∂

∂θj
{ft(ω)}−1f(ω)

∂

∂θl
{ft(ω)}−1

]

θ=T (f)

dω

+ 2π
p∑

a,b,c,d=1

s∑

r,t,u,v=1

∫ ∫ π

−π

{
∂

∂θj
f (r,t)
θ (ω1)

∂

∂θl
f (u,v)
θ (ω2)

}

θ=T (f)

kra(−ω1)ktb(ω1)kuc(−ω2)kvd(ω2)Q̃
e
abcd(−ω1,ω2,−ω2) dω1dω2

Proposition 3.7. Assumption:

(3.4) cum{ea(n1), eb(n2), ec(n3), ed(n4)} =

{
κabcd if n1 = n2 = n3 = n4

0 otherwise.

Result:

Ṽjl = 4π

∫ π

−π
tr

[
f(ω)

∂

∂θj
{ft(ω)}−1f(ω)

∂

∂θl
{ft(ω)}−1

]

θ=T (f)

dω

+
s∑

a,b,c,d=1

κabcd

[
1

2π

∫ π

−π
k∗(ω)

∂

∂θj
{fθ(ω)}−1k(ω)dω

]

ab
[
1

2π

∫ π

−π
k∗(ω)

∂

∂θl
{fθ(ω)}−1k(ω)dω

]

cd

∣∣
θ=T (f) .

In the case where f(ω) = fθ(ω) and θ is the innovation-free parameter, the second term
in the right-hand side will be 0. On the other hand, in the case of f(ω) ̸= fθ(ω), even if
(3.4) is satisfied, the quasi-Gaussian maximum likelihood estimates for the innovation-free
parameters are generally not robust against the fourth cumulant. In the case s = 1, that is
in the scalar case, the quasi-Gaussian maximum likelihood estimates for the innovation-free
parameters are robust against fourth cumulant even if f(ω) ̸= fθ(ω).
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4. application

4.1. An autoregressive signal with white noise.

(4.1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q∑

j=1

θjs(t− j) = η(t), n ∈ Z

E{η(t)} = 0

E{η(t)η(s)} = θq+1δ(t, s),

where all zeros of
∑

θjzj are assumed to be outside the unit circle.

(4.2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(t) = s(t) + e(t)

E{e(t)} = 0

E{e(t)e(s)} = θq+2δ(t, s)

E{e(t)η(s)} = 0 for all t and s.

Proposition 4.1. For the model above, we give the assumptions:

(1) {e(t)} and {η(t)} are fourth-order stationary processes.
(2) the vector-valued process {e(t), η(t)} satisyies

(a) ∀β1,β2,m, ∀ϵ > 0,
Var[E{eβ1(n)eβ2(n +m)|B(n − τ)} − δ(m, 0)Kβ1β2 ] = O(τ−2−ϵ) uniformly in
n.

(b) ∀η > 0,
E|E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)|B(n1−τ)}−E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)}| =
O(τ−1−η), uniformly in n1, where n1 ≤ n2 ≤ n3 ≤ n4.

(c) fββ are square-integrable.
(d)

∑∞
j1,j2,j3=infty |Qe

B1...B4
(j1, j2, j3)| < ∞.

(3) θ0 (true value of θ) ∈ B×K1×K2, where B,K1,K2 is compact subset respectively.

Results:

(4.3)
√
N{T (IX)− θ0} → N(0,M−1

f VM−1
f )

where

Vjl = 4π

∫ π

−π
{fθ0(ω)}2

∂

∂θj
{fθ0(ω)}−1 ∂

∂θl
{fθ0(ω)}−1 dω

+ 2π
2∑

α1,α2,α3,α4=1

∫ ∫ π

−π

∂

∂θj
{fθ0(ω1)}−1 ∂

∂θl
{fθ0(ω2)}−1

kα1(−ω1)kα2(ω1)kα3(−ω2)kα4(ω2)Q̃
e,η
abcd(−ω1,ω2,−ω2) dω1dω2.



ISOMETRIC APPROXIMATION

YAN LIU

1. Essential points

Definition 1.1 (ϵ-nearisometry and (1 + ϵ)-bilipschitz). f is an ϵ-nearisometry if

|x− y|− ϵ ≤ |fx− fy| ≤ |x− y|+ ϵ

for all x, y ∈ A, and that f is (1 + ϵ)-bilipschitz if

|x− y|/(1 + ϵ) ≤ |fx− fy| ≤ (1 + ϵ)|x− y|
for all x, y ∈ A.

Lemma 1.2. Suppose that A ⊂ Rn is a bounded set and that f : A → l2 is a map satisfying
the nearisometry condition. Then there is an isometry S : A → l2 such that

|Sx− fx| ≤ cn
√
ϵ

for all x ∈ A. Further, if A satisfies a thickness condition, then

|Sx− fx| ≤ cnϵ/q,

where q is a thickness parameter.

(The thickness condition is not so clear in the paper.)

Date: August 3, 2014.
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SUMMARY–ASYMPTOTICS OF TESTS FOR A UNIT ROOT IN
AUTOREGRESSION

GEN RYU

Suppose that {Yt : t = 1, . . . , n} is generated by the first-order autoregressive process

(0.1) Yt = θYt−1 + et, Y0 = 0, t = 1, . . . ,

where et’s are i.i.d. N (0,σ2) random variables and

θ = exp(
c

n
).

As a generation of the LSE θ̂ and ˆ̂θc1,c2 ,

θ̂c1,c2 =

∑n
t=2 YtYt−1∑n−1

t=2 Y 2
t + c1Y 2

1 + c2Y 2
n

, c1, c2 ≥ 0.

ˆ̂θc1,c2 =

∑n
t=2(Yt − Ȳ )(Yt−1 − Ȳ )

∑n−1
t=2 (Yt − Ȳ )2 + c1(Y1 − Ȳ )2 + c2(Yn − Ȳ )2

, c1, c2 ≥ 0, Ȳ =
n∑

t=1

Yt/n,

are supposed.
The hypothesis is supposed as

H : θ = 1 vs A : θ ∈ (0, 1).

For the testing problem, the following tests are introduced:

K1n =

√
2

nσ̂2

n∑

t=2

(θ̂c1,c2 − 1);(0.2)

K2n =
n√
2
(θ̂c1,c2 − 1);(0.3)

K3n =

(
n∑

t=2

Y 2
t−1

σ̂2

)1/2

(θ̂c1,c2 − 1),(0.4)

where σ̂2 = n−1∑n
t=2(Yt − θ̂c1,c2Yt−1)2.

Date: April 10, 2012.
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1. definitions

1.1. Ornstein-Uhlenbeck process. Let Jc(t) be an Ornstein-Uhlenbeck process

Jc(t) =

∫ t

0
exp{(t− s)c} dW (s),

which is generated by
dJc(t) = cJc(t)dt+ dW (t),

with initial condition Jc(0) = 0.

1.2. integrated process.
For the process above,
when c ̸= 0, it is called a near-integrated process;
when c = 0, it is called an integrated process.

2. assumptions

(1) E(et) = 0 for all t,
(2) suptE|et|β+ϵ < ∞ for some β > 2 and ϵ > 0,
(3) σ2 = limn→∞E(n−1S2

n) exists and σ2 > 0 where St =
∑t

s=1 es,

(4) {et} is strong mixing with mixing coefficients αm that satisfy
∑∞

m=1 α
1−2/β
m < ∞.

3. theorems and lemmas

Lemma 3.1 (Phillips(1987b)). If {Yt} is a near-integrated time series generated by (0.1),
then, as n → ∞,

(1) n1/2Y[nt]
d−→ σJc(t);

(2) n3/2∑n
t=1 Yt

d−→ σ
∫ 1
0 Jc(t) dt;

(3) n−2∑n
t=1 Y

2
t

d−→ σ2
∫ 1
0 Jc(t)2 dt;

(4) n−1∑n
t=1 Yt−1et

d−→ σ2
∫ 1
0 Jc(t) dW (t)+1

2(σ
2−σ2

e) with σ2
e = limn→∞ n−1∑n

t=1E(e2t ).

Theorem 3.2. If {Yt} is a near-integrated time series generated by the model above, then,
as n → ∞,

n(θ̂c1,c2 − θ)
d−→

(1− 2c2)Jc(1)2 − 2c
∫ 1
0 Jc(t)2 dt− σ2

e/σ
2

2
∫ 1
0 Jc(t)2 dt

.

Corollary 3.3. If θ = 1 (i.e., c = 0), then

n(θ̂c1,c2 − 1)
d−→ (1− 2c2)W (1)2 − σ2

e/σ
2

2
∫ 1
0 W (t)2 dt

.

Theorem 3.4. If {Yt} is a near-integrated time series generated by the model above, then,
as n → ∞,

n(ˆ̂θ − θ)
d−→ −2cG+ (1− 2c2)T 2 + 4c2TH − 2(c1 + c2 − 1)H2 − 2HW (1)− σ2

e/σ
2

2(G−H2)
,
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where G =
∫ 1
0 Jc(t)2 dt, T = Jc(1) and H =

∫ 1
0 Jc(t) dt.

Corollary 3.5. If θ = 1, then, as n → ∞,

n(ˆ̂θc1,c2 − 1)
d−→ (1− 2c2)T 2

w + 2(2c2 − 1)TwHw − 2(c1 + c2 − 1)H2
w − σ2

e/σ
2

2(Gw −H2
w)

,

where Gw =
∫ 1
0 W (t)2 dt, Tw = W (1) and Hw =

∫ 1
0 W (t) dt.

Theorem 3.6. Under H, as n → ∞, we have

K1n
d−→ (1− 2c2)W (1)2 − 1√

2
;(3.1)

K2n
d−→ (1− 2c2)W (1)2 − 1

2
√
2
∫ 1
0 W (t)2 dt

;(3.2)

K3n
d−→ (1− 2c2)W (1)2 − 1

2(
∫ 1
0 W (t)2 dt)1/2

.(3.3)

Theorem 3.7. Under An, as n → ∞, we have

K1n
d−→

(1− 2c2)Jc(1)2 − 2c
∫ 1
0 Jc(t)2 dt− 1

√
2

;(3.4)

K2n
d−→

(1− 2c2)Jc(1)2 − 2c
∫ 1
0 Jc(t)2 dt− 1

2
√
2
∫ 1
0 Jc(t)2 dt

;(3.5)

K3n
d−→

(1− 2c2)Jc(1)2 − 2c
∫ 1
0 Jc(t)2 dt− 1

2(
∫ 1
0 Jc(t)2 dt)1/2

.(3.6)



PAIRWISE SCORE FUNCTION

YAN LIU

Something has to be specified

Why do we use non-negative weights there in the bivariate marginal densities? In ?,
they mentioned that if the weights are all equal then they can be ignored: selection of
unequal weights to improve efficiency is discussed in the context of particular application
in their paper. A. Since there are many scores in the estimating function. ωi,j are weights
which can be used for example to reduce the number of pairs included in the estimation.
The parameter estimates are obtained by maximizing expression.

Or
If the weights are all constant, then they can be ignored. Selection of unequal weights

may improve efficiency, as explained in ?.

Date: May 29, 2014.
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1. Background

• Y q dimensional random vector;
• θ ∈ Θ ⊂ Rd, d ≥ 1;
• (Y1, . . . , Yn) are independent

Suppose that it is difficult to evaluate f(y; θ) and the corresponding likelihood L(θ). On the
other hand, we can compute the likelihoods for pairs of observations (yih, y

i
k) for i = 1, . . . , n,

and h, k = 1, . . . , q. The pairwise likelihood defined from the bivariate marginal densities
fhk(·, ·; θ) is given by

(1.1) pL(θ) =
n∏

i=1

q−1∏

h=1

q∏

k=h+1

fhk(y
i
h, y

i
k; θ)

wi
hk ,

where wi
hk are non-negative weights which do not depend on the parameter θ or on y.

Then the maximum pairwise likelihood estimator θ̂ is the solution of

(1.2) pU(θ) =
∂

∂θ
log pL(θ) =

n∑

i=1

q−1∑

h=1

q∑

k=h+1

wi
hk pU

i
hk(θ),

where

(1.3) pU i
hk(θ) =

∂

∂θ
log fhk(y

i
h, y

i
k; θ).

Remark 1.1. Here, the joint distribution of random vector is not assumed. The assump-
tions are correspond to the marginal distribution for bivariate part.

Note that (??) is a likelihood and the empirical likelihood can be defined. For the profile
empirical likelihood ratio function

(1.4) RE(θ) = sup{
n∏

i=1

npi|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(xi, θ) = 0},

we only have to assume

(1.5) g(xi, θ) =
q−1∑

h=1

q∑

k=h+1

wi
hk pU

i
hk(θ).

Or.... Change the order of the summation! There are two variations of the empirical
likelihood.

(i) Usual one:

(1.6) pwn(θ) = 2
n∑

i=1

log{1 + ξ′g(xi, θ)}

(ii) Or dimensional one:

(1.7) pwm(θ) = 2
m∑

r=1

log{1 + ξ′ pUr(θ)}.
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Proposition 1.2. Under H,

(1.8) pwn(θ)
L−→ χ2

d.

Proposition 1.3. Under H,

(1.9) pwm(θ)
L−→

d∑

j=1

ωjχ
2
d,

where ωj are the eigenvalues of the matrix H(θ)−1J(θ).

2. semivariogram

If

(2.1) γ(si, sj) = γ(∥si − sj∥),
that is, the semivariogram depends only on the distance between the locations, then they
are called isotropic semivariograms.

One of the commonly used isotropic semivariogram models is the exponential model

(2.2) γ(∥si − sj∥;φ) = c0 + σ(1− ρ∥si−sj∥).

3. words

1. isotropic 等長的な
2. anisotropic 非等長的な
3. nugget 金塊
4. sill 土台
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GEN RYU

1. Levy process

we denote its characteristic exponent by Ψ,

E(exp{i⟨λ, X1⟩}) = exp{−Ψ(λ)}.
Then the poisson process and Brownian motion can be shown as

Ψ(λ) = c(1− eiλ), Ψ(λ) =
1

2
|λ|2.

For every α ∈ (0, 2], a Lévy process with characteristic exponent Ψ is called a stable
process with index α, if Ψ(kλ) = kαΨ(λ). for every k > 0 and λ ∈ Rd. For α ̸= 2,
the Lévy measure of a stable process of index α can be expresses in polar coordinates
(r, θ) ∈ [0,∞)× Sd−1 in the form

Π(dr, dθ) = r−α−ddrv(dθ),

where v is some finite measure on Sd−1.

Date: February 7, 2012.
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SUMMARY OF LINEAR ALGEBRA AND THE WAY TO SPECTRAL
MEASURE

GEN RYU

Referecen

(1) William Arveson [2002]
A short course on spectral theory

(2) Sam Raskin [2006]
Spectral Measures and the Spectral Theorem

Part 1. Two Ideas

The fundamental problem of linear algebra over the complex numbers is the solution of
systems of linear equations. One can write the problem like:

⎧
⎪⎪⎨

⎪⎪⎩

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2
· · · · · · · · · · · · · · ·
an1x1 + · · ·+ annxn = bn

where a11, · · · , ann, b1, bn are given, and one attempts to solve for x1, · · · , xn. It is also
usual to write the system in the matrix way, that is

Ax = b.

1. Linear Operator

The existence of solutions for any choice of b is equivalent to surjectivity of A; uniqueness
of solutions is equivalent to injectivity of A. Thus the system of equations is uniquely
solvable for all choices of b if and only if the linear operator A is invertible.

However, in infinite dimensions the difficulty lies deeper than the things above, because
for most operators on an infinite-dimensional Banach space there is no meaningful con-
cept of determinant. In other words, there is no numerical invariant for operators that
determines invertibility in infinite dimensions as the determinant does in finite dimensions.

Date: June 9, 2012.
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2. Eigenvalues

In finite dimensions, eigenvalues and eigenvectors for an operator A occur in pairs (λ,x),
where Af = λx, and x is nonzero vector in Cn and λ is a complex number.

Let think the case more general. Vλ = {x ∈ Cn;Ax = λx} ⊂ Cn is always a linear
subspace of Cn. However, Vλ is nontrivial if and only if the operator A−λI has nontrivial
kernel: that is to say, if and only if the operator A− λI is not invertible.

Assuming that A is invertible, one can find x by the decomposition of b. Let b be
decomposed by

b = b1 + b2 + · · ·+ bn,

where bj is in Vλj , λ1, . . . , λk being eigenvalues of A, then x is shown as

x = λ−1
1 b1 + λ−1

2 b2 + · · ·+ λ−1
k bk.

Part 2. Spectral Measure

3. notations

We denote any Hilbert spaces by H.

4. Riesz Lemma

Lemma 4.1. If ψ is a linear functionsl on H, then ψ(v) = (v, w) for suitable choice of
w ∈ H.

note. one can decompose v = v1+ v2, where v1 =
ψ(v)
|w|2 w. Then ψ(v2) = 0 leads the lemma.

Lemma 4.2 (Riesz). If ψ is a bounded bilinear functional on H, then there exists a unique
operator A such that ψ(v, w) = (Av,w) for all v, w ∈ H.

5. adjoints

Theorem 5.1. For A an operator, there exists a unique operator A∗, the adjoint of A,
satisfying the identity (Av,w) = (v,Aw) for all v, w ∈ H.

Definition 5.2. An operator A is Hermitian if A = A∗. An operator A is normal if
||Av|| = ||A∗v|| for all v ∈ H.

Proposition 5.3. An operator A is nomal iff AA∗ = A∗A.

note. Note that in the Riesz lemma, if ϕ is symmetric, that is, ϕ(v, w) = ϕ(w, v), then the
resulting operator will be Hermitian.
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6. Projections

Definition 6.1. If M is a closed subspace of H, then elementary Hilebert space theory
tells us that every vector v ∈ H has a unique decomposition v = v1 + v2, where v1 ∈ M
and v2 ∈ M⊥. We define the projection onto M to be the map P : v "→ v1. Note that P is
necessarily an operator. If M = C, we denote P by 1, and if M = {0}, we denote P by 0.

Definition 6.2. Let {Pi}i∈I be projections onto Mi. We partially order these by Pi ≤ Pj

if Mi ⊂ Mj. We further define
∑

i∈I Pi to be the projection onto ∪i∈IMi.

Theorem 6.3. An operator P is a projection if and only if it is Helmitian and idempotent
(P 2 = P ).

note. It suffices to prove that for all v ∈ H, (Pv, v − Pv) = 0.
note2. In finite case, the projection can be written in the form of elements in the operator,
that is,

P = A12A
−1
22

where Aij is (i, j)-element of A.

Corollary 6.4. If P is a projection, then for all v ∈ H, ||Pv||2 = (Pv, v).

7. Spectral Measures

Let B(C) be the set of Borel sets in C and P (H) the set of projections on H.

Definition 7.1. A spectral measure is a function E : B(C) → P (H) satisfying the following
properties:

(1) E(∅) = 0 and E(C) = 1;
(2) If {Bn}n∈N is a family of disjoint Borel sets, then E(

⋃
Bn) =

∑
E(Bn).

8. Properties of Spectral measure

8.1. Equalities and Inequalities.

E(B0 ∪B1) + E(B0 ∩B1) = E(B0) + E(B1);

E(B0)E(B0 ∪B1) = E(B0);

E(B0 ∩B1) = E(B0)E(B1).

Furthermore, if B0 ⊂ B1, then
E(B0) ≤ E(B1),

where the definition of ”≤” is given in (6.2).

8.2. The sufficient condition for spectral measure.

Proposition 8.1. Suppose E : B(C) → P (H) is any function such that ∀v, w ∈ H, the
function E∗(B) = (E(B)v, w) satisfies E∗(

⋃
Bn) =

∑
E∗(Bn) and that E(C) = 1. Then

E is a spectral measure.
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9. Spectral Integrals and their Associated Operators

Definition 9.1. Given a spectral measure E, spectral integral is defined as the Lebesgue-
Stieltjes integral ∫

f(λ)d(E(λ)v, w), ∀v, w ∈ H.

Definition 9.2. The spectrum of a spectral measure E is Λ(E) = C\∪Ui, where the union
is taken over all open sets Ui for which E(Ui) = 0. We say that E is compact if Λ(E) is
compact.

Theorem 9.3. For E a compact spectral measure, there is a unique normal operator A
such that ∀v, w ∈ H,

∫
λd(E(λ)v, w) = (Av,w).

note. First, show the boundedness of ϕ(v, w) for the existence of operator. Next, show the
uniqueness of the adjoint. Last, show the normality of the operator.

10. The spectrum of an Operator

Definition 10.1. The spectrum of an operator A is the set Λ(A) = {λ ∈ C|A−λIis not invertible}

Theorem 10.2. If A is an operator, then Λ(A) is compact. In particular, if λ ∈ Λ(A),
then ||λ|| ≤ ||A||.

To prove this theorem, we need a proposition here.

Proposition 10.3. If A is any operator such that ||A− I|| < 1, then A is invertible.

Finally, what we assumed on the spectrum can be justified by the theorem below.

Theorem 10.4. If E is a compact spectral measure and A =
∫
λdE(λ), then Λ(E) = Λ(A).



LONG RANGE DEPENDENCE

YAN LIU

1. Reference

McElroy and Holan (2014), AS.

2. notations

2.1. Notations.

1. Zj e−iλj

2. ⟨FZ−h1
1 Z−h2

2 ⟩ γh1,h2(F )

3. Fundamental Setting

3.1. Basics.

(i) autocovariance function (acf)

Cov(Ys1,s2 ,Yr1,r2 = E[Ws1,s2Wr1,r2 ] = γs1−r1,s2−r2 .

for all s1, s2, r1, r2 ∈ Z.

(ii) the commutativity of the field Y
γh1,h2(F ) = γ−h1,−h2(F )

(iii) the spectral density

F (λ1,λ2) =
∑

h1,h2∈Z
γh1,h2(F )Zh1

1 Zh2
2 .

We have the following by the Fourier inversion

γh1,h2(F ) =
1

4π2

∫ π

−π

∫ π

−π
F (λ1,λ2)Z

−h1
1 Z−h2

2 dλ1dλ2.

Date: November 30, 2014.
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3.2. Assumptions. There exists 0 < α(θ) < 1 such that for each δ > 0,

(A.1) g(θ) =
∫ π
−π log f(x, θ)dx can be differentiated twice under the integral sign.

(A.2) f(x, θ) is continuous at all (x, θ), x ̸= 0, f−1(x, θ) is continuous at all (x, θ), and

f(x, θ) = O(|x|−α(θ)−δ), as x → 0.

(A.3) ∂/∂θjf−1(x, θ) and ∂2/∂θj∂θkf−1(x, θ) are continuous at all (x, θ),

θ

∂θj
f−1(x, θ) = O(|x|−α(θ)−δ) as x → 0, 1 ≤ j ≤ p,

and

∂2

∂θj∂θk
f−1(x, θ) = O(|x|α(θ)−δ) as x → 0, 1 ≤ j, k ≤ p.

(A.4) ∂/∂xf(x, θ) is continuous at all (x, θ), x ̸= 0, and

∂

∂x
f(x, θ) = O(|x|−α(θ)−1−δ), as x → 0.

(A.5) ∂2/∂x∂θjf−1(x, θ) is continuous at all (x, θ), x ̸= 0, and

∂2

∂x∂θj
f−1(x, θ) = O(|x|α(θ)−1−δ) as x → 0, 1 ≤ j ≤ p.

(A.6) ∂3/∂x2∂θjf−1(x, θ) is continuous at all (x, θ), x ̸= 0, and

∂3

∂2x∂θj
f−1(x, θ) = O(|x|α(θ)−2−δ) as x → 0, 1 ≤ j ≤ p.

4. Main Results

Proposition 4.1. The act of the cepstral model is given by

γh1,h2(F ) = eΘ0,0
∑

j1,j2∈Z
γj1,j2(Φ)

[ ∑

k1,k2∈Z
γh1+j1−k1,h2−j2−k2(Ψ)γk1(Ξ)γk2(Ω)

]
,
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where γ(Φ), γ(Ψ), γ(Ξ) and γ(Ω) can be calculated in terms of their coefficients, which are
recursively given by

ψj1,j2 =
1

j1

p1∑

k1=1

k1
( j2∑

k2=1

ψj1−k1,j2−k2Θk1,k2

)
,

φj1,j2 =
1

j1

p1∑

k1=1

k1
( j2∑

k2=1

φj1−k1,j2−k2Θ−k1,k2

)
,

ξj1 =
1

j1

p1∑

k1=1

k1Θk1,0ξj1−k1 ,

ωj2 =
1

j2

p1∑

k2=1

k2Θ0,k2ωj2−k2

for j1 ≥ 1 and j2 ≥ 1.

5. Further Reading

• See Sinai (1976, TPA) for the derivation of the spectral density of long-range de-
pendent process

• See Granger and Joyeux (1980) and Hosking (1981) for the modeling of strongly
dependent phenomena.

• Fox and Taqqu (1983), technical report 590, Cornell Univ.

• Fox and Taqqu (1985), AP

6. notations

1. Xt, t ∈ Z a strongly dependent time series
2. f(x) the spectral density of the time series
3. L a slowly varying function at infinity
4. α the exponent
5. G a polynomial
6. Yt = G(Xt)
7. sθ(x) = σ2gθ(x) the spectral density of the process Yt
8. LG,θ a slowly varying function
9. (θ,σ2) the parameters
10. AN,θ = {aθ(t− s)}t,s=1,...,N

11. ρ1 = 2
∑

t∈Z[EĠ(Xt)G(X0)]∇aθ0(t)
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7. Fundamental Setting

7.1. Basics.

(i) Estimators
θ̂N = argmin

θ
N−1Y ′AN,θY,

where Y = (Y1, . . . , YN ).

(ii) aθ(t) is defined by

aθ(t) =

∫ π

−π
eitsg−1

θ (x)dx.

(iii) vm,n(t− s)

vm,n(t− s) =
1

m!n!
[EGm(Xt)G

(n)(Xs)]∇aθ0(t− s).

(iv) ρk
ρk =

∑

m,n≥0;m+n=k

∑

t∈Z
vm,n(t)

⟨ss:7.2⟩ 7.2. Assumptions.

(i) The spectral density f(x) satisfies

f(x) = |x|−αL(1/|x|), x ∈ [−π,π], (0 < α < 1).

Remark 7.1. Note that α = 1− 2H (1/2 < H < 1).

(ii) gθ satisfies
gθ(x) = |x|−αG(θ)LG,θ(1/|x|), |x| ≤ π,

where 0 ≤ αG(θ) < 1.

(iii) Suppose ∫ π

−π
log gθ(x)dx = 0, θ ∈ Θ. (7.1) eq2.3:gt1999

(iv) (∂2/∂θi∂θj)g
−1
θ (x) is a continuous function in (x, θ).

(v) For any small fixed number ϵ > 0,
∣∣∣
∂

∂θj
g−1
θ (x)

∣∣∣ ≤ C|x|αG(θ)−ϵ, |x| ≤ π for θ = θ0,

∣∣∣
∂2

∂x∂θj
g−1
θ (x)

∣∣∣ ≤ C|x|αG(θ)−1−ϵ, |x| ≤ π for θ = θ0.
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(vi) the spectral density f of the Gaussian sequence (Xt) satisfies
∣∣∣
d

dx
f(x)

∣∣∣ ≤ C|x|−α−1ϵ, |x| ≤ π,

where ϵ = ϵ(θ) > 0 is any fixed number.

8. Main Results

Theorem 8.1. Assume that (7.1) holds and that g−1
θ (x) is a continuous function. Then

almost surely,

lim
N→∞

θ̂N = θ0.

lim
N→∞

σ̂2N = σ20.

⟨thm2.2:gt1999⟩Theorem 8.2. Suppose that Assumptions 7.2 hold, that W−1
θ0

exists and ρ1 ̸= 0. Then

θ̂N − θ0 = −(2πσ20)
−1W−1

θ0
ρ1
(
N−1

N∑

j=1

Xj

)
(1 + oP (1)).

Corollary 8.3. Theorem 8.2 implies that

[N1−αL−1(N)]1/2(θ̂N − θ0)
L−→ (2πσ20)

−1W−1
θ0
ρ1ξ,

where ξ is a Gaussian random variable with zero mean and variance Eξ2 = 2/(α(α+ 1)).

Example 1. In the case of G(Xt) = Xt, Ġ(Xt) = 1 and EĠ(Xt)G(Xt) = EXt = 0 and
therefore ρ1 = 0.

Theorem 8.4. Let ρ1 = 0, ρ2 ̸= 0.

(i) If 1/2 < α < 1, then

N (1−α)L−1(N)(θ̂N − θ0)
L−→ (2πσ20)

−1W−1
θ0
ρ2I2,

where I2 has the Rosenblatt distribution, i.e.,

I2 =

∫

R2

exp(it(x1 + x2))− 1

i(x1 + x2)
|x1|−α|x2|−αZ(dx1)Z(dx2), α > 1/2.

(ii) If 0 < α < 1/2, then
√
N(θ̂N − θ0)

L−→ N (0, (2πσ20)
−2W−1

θ0
DW−1

θ0
),

where D is a p× p matrix with entries

d(i, j) =
∑

t∈Z

⎡

⎣
∑

s1,s2∈Z
ȧ(i)θ0

(s1)ȧ
(j)
θ0

(s2)Cov(G(Xt)G(Xt+s1), G(X0)G(Xs2))

⎤

⎦ .

9. words

1. rather the exception than the rule どちらかといえば例外的で
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10. New knowledge

• The compensation effect in the Whittle estimator appears when the observations
Xt are pure Gaussian or linear is rather the exception than the rule!!



MINIMAX PROBLEM

YAN LIU

1. Reference

Hosoya (1978), AP

2. Notations

1. D0 the class of all probability distribution functions
2. D1 ⊂ D0 the class of ... absolutely continuous w.r.t. the Lebesgue measure
3. F0(F ) ⊂ D0 {H ∈ D0;H = (1− ϵ)F + ϵG,G ∈ D0}
4. F1(F ) ⊂ D0 {H ∈ D0;H = (1− ϵ)F + ϵG,G ∈ D1}
5. Em(f) = {ω ∈ (−π,π];m ≥ (1− ϵ)f(ω)}
6. Fm(f) = {ω ∈ (−π,π];m < (1− ϵ)f(ω)}
7. L(H) the class of a linear predictor
8. L0(f) = ∩H∈F0(F )L(H)
9. L1(f) = ∩H∈F1(F )L(H)
10. λi jumps at countable points with the corresponding saltuses ∆F (λi)

3. Concepts and definitions

3.1. Contrast function.

fm(ω) =

{
(1− ϵ)f(ω) ω ∈ Fm(f)

m(f) ω ∈ Em(f)

4. Results

Theorem 4.1. There exists an optimal predictor φm ∈ L1 for the spectral density fm such
that

max
H∈F1(F )

V (φm, H) = 2π exp

{
1

2π

∫ π

−π
log fm(ω)dω

}
.

Proposition 4.2.

max
H∈F1(F )

V (φm, H) = min
φ∈L1(F )

max
H∈F1(F )

V (φ, H) = 2π exp

{
1

2π

∫ π

−π
log fm(ω)dω

}
.

Date: December 16, 2014.
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FOR NON-STANDARD RANK TESTS

GEN RYU

Reference

• Janssen and Mason[1990]
Non-Standard Rank Tests

1. Preface

In the models with the standard regularity assumptions, the rank tests is efficient and
powerful, since the rank statistics with the exact score of the approximate score is dis-
tributed as normal distribution, and if the logarithm of ratio of the densities of null hy-
potheses and alternative hypotheses is distributed as normal distribution, by Cramer de-
vice, we can see that the rank statisticss are efficient and the distribution of the statistics
is normal under both hypotheses from Le Cam’s third lemma.

It has been well-known since Hájek and Sidak that rank tests work well under standard
regularity conditions. These are assumptions concerning the differentiability of the under-
lying parametric model. L1-differentiability of the densities is needed to derive locally most
powerful rank tests at a finite sample size, whereas, the now famous L2-differentiability of
the square root of the densities is required to prove the asymptotic efficiency of rank tests
under certain parametric alternatives.

note. Weibull location models with shape parameter a ≤ 1 are excluded from the class.

In this book, the methodology to construct rank tests for models where the standard
regularity assumptions do not hold.

note2. The treatable non-standard models where the L2-differentiability assumption is
violated can be divided into two classes:

(1) the Fisher information ”just” fails to be finite, almost regular models
(2) non-regular or irregular models.

1.1. Simple Linear Rank Statistics. Here the simple linear rank statistic

TN (R) =
N∑

i=m+1

aN (Ri)

Date: June 15, 2012.
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with wights given by

aN (i) = E[ (−ḟ(F−1(Ui)))/f(F
−1(Ui)) ], i = 1, 2, . . . , N.

1.2. Efficiency. Efficiency means that the test reaches asymptotically the same power
under the local alternatives as the corresponding Neyman-Pearson tests.

1.3. Quick consistency. Quick consistency means that the test has the optimal rate of
convergence as measured in terms of local alternatives. More precisely, consider simple
alternatives

θN = θF−1(1/n), θ > 0,

and let ΨN denote the Neyman-Pearson test for {0} against {θN} at sample size N .
For level α tests and sufficiently small θ > 0

1 > lim
N→∞

EθNΨN > α

and
1 > lim

N→∞
EθNΦN > α.

Theorem 1.1.

• The score rank test is asymptotically efficient for a = 1.
• The score rank test is quickly consistent for 0 < a < 1.
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GEN RYU

reference

(1) [article] H. Ogata(2010)
Empirical Likelihood Estimation for a class of Stable Processes

(2) [book] M. Taniguchi and Y. Kakizawa(2000)
Asymptotic Theory of Statistical Inference for Time Series

1. MA Model with stable innovations

(1.1) Xt =
∞∑

j=0

ϕj,ξZt−j , t ∈ Z, ξ ∈ Ξ ⊂ Rq

Here, the parameters is denoted by θ = (α, γ, ξ′)′ ∈ Θ ⊂ R2+q.

2. Definitions

2.1. A summary for mixing condition. [Taniguchi & Kakizawa]

2.1.1. Uniform Mixing Condition.

Definition 2.1. The process {Xt; t ∈ Z} is said to satisfy a uniform mixing condition if

sup
A∈Ft

−∞, B∈F∞
t+τ

|P (A ∩B)− P (A)P (B)|
P (A)

≡ φ(τ) → 0 as τ → ∞.

2.1.2. Strong Mixing Condition.

Definition 2.2. {Xt; t ∈ Z} is said to satisfy a strong mixing condition if there exist a
positive function g satisfying g(n) → 0 as n → ∞ so that

|P (A ∩B)− P (A)P (B) | < g(r − q), A ∈ Fq
−∞, B ∈ F∞

r ,

where notation follows Fq
−∞ = σ{Xq,Xq−1 . . . } and F∞

r = σ{Xr,Xr+1 . . . }.

2.1.3. Mixing.

Definition 2.3. {Xt; t ∈ Z} is said to be mixing if

lim
n→∞

P (A ∩ T−nB) = P (A)P (B) A,B ∈ F .

Date: May 21, 2012.

1



2 GEN RYU

2.1.4. Ergodicity.

Definition 2.4. The process {Xt; t ∈ Z} is said to be ergodic if for all A ∈ A, either
P (A) = 0 or P (A) = 1.

note. The relation of logic above is (2.1) ⇒ (2.2) ⇒ (2.3) ⇒ (2.4).

Part 1. Empirical likelihood estimation

3. Assumptions and their interpretation

3.1. Assumptions. [Ogata(2010)]

Assumption 3.1. The coefficient φj’s satisfies the following conditions.

(A1) ϕ0 = 1.
(A2)

∑∞
j=0 |ϕj |α < ∞.

(A3) {Xt}t∈Z satisfies the uniform mixing condition and that the mixing coefficient φ(τ)
satisfies

∑
τ{φ(τ)}1/2 < ∞.

3.2. Interpretation of assumptions.

(A1) It means that the model is standardized by this assumption.
(A2) The assumption guarantees that a.s. convergence of series (??). See Embrechts et

al.(1997, Sec 7.2) for details.
(A3) This assumption is used for the CLT in the proof of Lemma 1 in section 6.

4. The important equation and its transformation

4.1. The theoretical characteristic function.

φθ



SUMMARY ON THE SPECTRAL ANALYSIS OF TIME SERIES
MODELS

GEN RYU

Consider the linear process

X(t) =
∞∑

j=0

A(j)U(t− j), t ∈ Z,

where the innovations U(j) are i.i.d. s-vector random variables. The process {X(t)} has
spectral density matrix which is expressed as

g(ω) = (2π)−1k(ω)k(ω)∗, −π ≤ ω ≤ π,

where k(ω) =
∑∞

j=0A(j)e
iωj . The periodogram of the process is defined as

IT (ω) = (2πT )−1dT (ω)dT (ω)
∗, −π ≤ ω ≤ π,

where dT (ω) =
∑T

t=1X(t)e−iωt.

1. Whittle likelihood

The multivariate Whittle likelihood is given by

W (θ) =

∫ π

−π
[ log det fθ(ω) + tr{fθ(ω)−1IT (ω)} ]dω.

The spectral form of a general linear process is given by

fθ(ω) =

⎛

⎝
∞∑

j=0

Bj(θ)e
ijω

⎞

⎠Σ

⎛

⎝
∞∑

j=0

Bj(θ)e
ijω

⎞

⎠
∗

,

where the Bj(θ) are s × s matrices, B0(θ) is an s × s identity matrix and Σ is an s × s
symmetric matrix. Assuming that the parameter θ does not depend on Σ, which corre-
sponds to the covariance matrix of the innovation, while the Bj depend on θ, we call θ
”innovation-free”.

Let θ0 be the value defined by

(1.1)
∂

∂θ

∫ π

−π
[ log det fθ(ω) + tr{fθ(ω)−1g(ω)} ]dω

∣∣∣∣
θ=θ0

= 0,

which is called the pseudo-true value of θ. Here, θ0 means the point minimizing the D(fθ, g)
under natural conditions.

Date: June 11, 2012.
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SOME USEFUL RESULTS

GEN RYU

Reference

(1) [book] L.Breiman(1968)
Probability

(2) [book] P.Billingsley(1968)
Convergence of Probability Measures

Part 1. The relation between characteristic function and the distribution

1. Definitions

1.1. Definition for all probability measures.

Definition 1.1. Let D denote the set of all distribution functions. A subset L ⊂ D will be
said to be mass-preserving if for any ϵ > 0, there is a finite interval I such that

F (Ic) < ϵ for all F ∈ D.

In general, we have an extension of the definition as follows:

Definition 1.2. A family Π of probability measures on the general metric space S is said
to be tight if for every positive ϵ there exists a compact set K such that P (K) > 1− ϵ for
all P in Π.

This definition introduces another definition, which is a little weaker than tight.

Definition 1.3. A family Π on (S,S) is relatively compact if every sequence of elements
of Π contains a weakly convergent subsequence; that is, if for every sequence {Pn} in Π
there exist a subsequence {Pn′} and a probability measure Q which defined on (S,S) such

that Pn′
d−→ Q.

1.2. infinitely divisible distribution.

Definition 1.4. X will be said to have an infinitely divisible distribution if for every n,

there are independent and identically distributed random variables X(n)
1 , X(n)

2 , X(n)
n such

that L(X) = L(X(n)
1 +X(n)

2 + · · ·+X(n)
n ).

Date: May 31, 2012.
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2. Theorems

2.1. Theorems concerning the family of probability measures.

Theorem 2.1 (Billingsley(1968) Thm 6.1). If Π is tight, then it is relatively compact.

Theorem 2.2 (Billigsley(1968) Thm 6.2). Suppose S is separable and complete. If Π is
relatively compact, then it is tight.

Corollary 2.3 (Breiman(1968) Cor 8.11). If Fn
d−→ F , F ∈ D, then {Fn} is mass-

preserving.

3. Definition 2

Definition 3.1. A set E of bounded continuous functions on R will be called D-separating
if for any F,G ∈ D, ∫

fdF =

∫
fdG, ∀f ∈ E

implies F = G.

4. The result from definition

Proposition 4.1 (Breiman Prop 8.15). Let E be D-separating, and {Fn} mass-preserving.

Then there exists an F ∈ D such that Fn
d−→ F if and only if

lim
n

∫
fdFnexists, for all f ∈ E .

If this holds, then limn
∫
fdFn =

∫
fdF , for all f ∈ E.

Corollary 4.2 (Breiman Cor 8.16). Let E be D-separating and {Fn} mass-preserving. If

F ∈ D is such that
∫
fdFn →

∫
fdF , for all f ∈ E, then Fn

d−→ F .

Proposition 4.3 (Breiman Prop 8.17). E0, which is the family of trapezoid functions is
D-separating.

Proposition 4.4 (Breiman Prop 8.18). Let E be a class of continuous bounded functions
on R with the property that for any f0 ∈ E0, there exist fn ∈ E such that sup |fn(x)| < M ,
for all n, and limn fn(x) = f0(x) for every x ∈ R. Then E is D-separating.

5. The justification of characteristic functions

Theorem 5.1 (Breiman thm 8.28–The continuity theorem). If Fn are distribution func-
tions with characteristic functions fn(u) such that

(1) limn fn(u) exists for every u,
(2) limn fn(u) = h(u) is continuous at u = 0,

then there is a distribution function F such that Fn
d−→ F and h(u) is the characteristic

function of F .
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The theorem holds because the class of characteristic functions makes up the property
of D-separating, and the continuity at u = 0 implies mass-preserving.

Theorem 5.2 (Breiman 8.24). The set of all complex exponentials {eiux}, u ∈ R is D-
separating.

Proposition 5.3 (Breiman 8.29). There exists a constant α, 0 < α < ∞, such that for
any distribution F with characteristic function f , and any u > 0,

F

([
−1

u
,
1

u

]c)
≤ α

u

∫ u

0
(1− Ref(v))dv.

Part 2. The Infinitely divisible laws and Stable distributions

6. Definitions

Definition 6.1. X will be said to have an infinitely divisible distribution if for every n,

there are independent and identically distributed random variables X(n)
1 , . . . , X(n)

n such
that

L(X) = L(X(n)
1 + · · ·+X(n)

n ).

Let
Sn = X(n)

1 + · · ·+X(n)
n ,

then we have following proposition.

Proposition 6.2 (Breiman 9.10). If Sn
d−→ X, then X(n)

1
d−→ 0.

6.1. Some useful equations. Let f(u) be the characteristic function of X. Therefore,

since L(X) = L(X(n)
1 + · · ·X(n)

n ), there is a characteristic function fn(u) such that f(u) =
[ fn(u) ]n and from the proposition fn(u) → 1 uniformly in u. Then,

log f(u) = n log[ 1− (1− fn(u)) ] = n(fn(u)− 1)(1 + ϵn(u)),

where ϵ → 0 uniformly in u. Denote by Fn the distribution function of X(n)
1 , then

log f(u) = (1 + ϵn(u))

∫
(eiux − 1)ndFn.

Theorem 6.3 (Breiman thm 9.17). X has infinitely divisible distribution if and only if its
characteristic function f(u) is given by

log f(u) = iβu− σ2u2

2
+

∫ (
eiux − 1− iux

1 + x2
1 + x2

x2
ν(dx),

)

where ν is a finite measure that assigns zero mass to the origin.

note. The time honored custom is to take x2

1+x2 for the change of measure.

note2. The order of the change of measures is

Fn → µn → νn (the change has using the term above) → ν.
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7. Stable laws

Definition 7.1. A random variable X is said to have stable law if for every integer k > 0,
and X1 . . . , Xk independent with the same distribution as X, there are constants ak > 0,
bk such that

L(X1 + · · ·+Xk) = L(akX + bk).

Theorem 7.2 (Breiman 9.27). Let X have a stable law. Then either X has a normal
distribution or there is a number α, 0 < α < 2, called the exponent of the law and constants
m1 ≥ 0, m2 ≥ 0, β such that

log fX(u) = iuβ+m1

∫ ∞

0

(
eiux − 1− iux

1 + x2

)
dx

x1+α
+m2

∫ 0

−∞

(
eiux − 1− iux

1 + x2

)
dx

|x|1+α

note. An equation used in Hosoya(1978) is very difficult to understand, so we give an
explanation here. Define a measure µ:

µ(B) =

∫

B

1 + x2

x2
γ(dx).

Then µ is σ-finite, µ[−a, a]c < ∞, for any a > 0,
∫
[−a,a] x

2dµ < ∞, and

ϕ(aku) = iakβu+

∫ (
eiuakx − 1− iuakx

1 + x2

)
µ(dx)

= idku+

∫ (
eiuakx − 1− iuakx

1 + a2kx
2

)
µ(dx),

where

dk = akβ + ak

∫ [
x

1 + a2kx
2
− x

1 + x2

]
µ(dx).

Then define a change of variable measure µk by

µk(B) = µ(z; akz ∈ B),

to get

ϕ(aku) = idku+

∫ (
eiux − 1− iux

1 + x2

)
µk(dx).

Theorem 7.3 (Breiman 9.32). f(u) = eϕ(u) is the characteristic function of a stable law
of exponent α, 0 < α < 1, and 1 < α < 2 if and only if it has the form

ϕ(u) = iuc− d|u|α
(
1 + iθ

u

|u| tan
π

2
α

)
,

where c is real, d is real and positive, and θ real such that |θ| ≤ 1. For α = 1, the form of
the characteristic function is given by

ϕ(u) = iuc− d|u|
(
1 + iθ

u

|u|
2

π
log |u|

)
,

with c, d, θ as above.



PROFILE LIKELIHOOD

1. Reference

Mupphy and van der Vaart (2000), JASA.

2. notations

2.1. Notations.

1. θ a low-dimensional parameter of interest
2. η a higher-dimensional nuisance parameter
3. (θ, η) the parameter
4. ln(θ, η) the full likelihood
5. pln(θ) the profile likelihood for θ
6. l̃0 the efficient score function for θ
7. Ĩ0 the efficient Fisher information matrix

3. Fundamental Setting

(i) the profile likelihood for θ

pln(θ) = sup
η

ln(θ, η).

(ii) For any random sequence θ̃n →p θ0,

log pln(θ̃n) = log pln(θ0) + (θ̃n − θ0)
T

n∑

i=1

l̃0(Xi)−
1

2
n(θ̃n − θ0)

T Ĩ0(θ̃n − θ0)

+ oPθ0,η0
(
√
n∥θ̃n − θ0∥+ 1)2. (3.1) eq:3.1

4. Main Results

Corollary 4.1. If (3.1) holds, Ĩ0 is invertible, and θ̂n is consistent, then they hold that

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

Ĩ−1
0 l̃0(Xi) + oPθ0,η0

(1). (4.1) {?}

log pln(θ̃n) = log pln(θ̂n)−
1

2
n(θ̃n − θ̂n)

T Ĩ0(θ̃n − θ̂n) + oPθ0,η0
(
√
n∥θ̃n − θ0∥+ 1)2.

(4.2) {?}
1
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In particular, the MLE is asymptotically normal with mean 0 and covariance matrix the
inverse of Ĩ0.

Corollary 4.2. If (3.1) holds, Ĩ0 is invertible, and θ̂n is consistent, then under the null
hypothesis H0 : θ = θ0, the sequence 2 log(pln(θ̂n)/pln(θ0)) is asymptotically chi-squared
distributed with d degrees of freedom.

5. question

(1) What is d?

6. Further Reading

7. Structure

(1) Introduction
(2) Least favorable submodels
(3) Main result
(4) Examples
(5) Disscussion



ROBUSTNESS

YAN LIU

1. Reference

Li (2008), JASA.

2. notations

2.1. Notations.

1. µt deterministic sequence
2. ϵt random process
3. Ft(x) marginal distribution
4. ft(x) density function
5. Fts(u, v) bivariate distribution
6. rts(u, v) below
7. wjt below
8. d, c, N0 positive numbers
9. W0, Q0 positive definite matrixes

2.2. Fundamental Setting.

(i) model

yt = µt + ϵt

(ii) regression coefficient

β̂jn = arg min
β∈Rp

n∑

t=1

|yt − xTjtβ|

(iii) difference between dependence and independence

rts(u, v) = Fts(u, v)− Ft(u)Fs(v)

(iv) mean difference

wjt = xTjtβ0 − µt

Date: September 16, 2014.
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2.3. Assumptions.

(A1) The derivative of Gt(u) with respect to u, denoted as gt(u) := Ġt(u), exists for all u
and satisfies gt(wjt) = O(1) uniformly.

(A2) Gt(u+wjt)−Gt(wjt) = gt(wjt)u+O(ud+1) uniformly for |u| ≤ u0, where d > 0 and
u0 > 0 are some constants.

(A3) Λjn := n−1∑n
t=1 gt(wjt)xjtxT

jt ≥ Λ0 for all j and for large n, where Λ0 is a positive
definite matrix.

(A4) Cjkn := n−1∑n
t=1

∑n
s=1 rts(wjt, wks)xjtxT

ks ≥ C0 for all j, k, and for large n, where
C0 is a positive definite matrix and

rts(u, v) := Gts(u, v)−Gt(u)Gs(v).

(A5) {ϵt} is an m-dependence process or a linear process of the form ϵt :=
∑∞

l=−∞ φlet−l,
where {et} is an i.i.d. random sequence with E|et| < ∞ and {φl} is an absolutely
summable deterministic sequence such that

∑
|l|>nr φl = o(n−1) as n → ∞ for some

constant r ∈ [0, 1/4).

3. Main results

Lemma 3.1 (Quantile Regression Lemma). Under assumptions above,

(3.1)
√
nvec[β̂jn − βj]

q
j=1

L−→ N (µn,Σn),

as n → ∞. Furthermore,

(3.2)
n∑

t=1

ρα(Yt − xT
jtβ̂jn) =

n∑

t=1

ρα(Yt − xT
jtβj)−

1

2
ζTjnΛ

−1
jn ζjn + oP (1),

and the ζjn are asymptotically jointly normal such that

(3.3) vec[ζjn]
q
j=1

L−→ N (vec[hjn]
q
j=1, [Cjkn]

q
j,k=1).

4. Further setting

4.1. Notations.

(1) model
yt = ϵt

(2) a new regression coefficient

β̂n(ω) := arg min
β∈R2

n∑

t=1

|yt − xTt (ω)β|

(3) a new periodogram

Ln(ω) =
1

4
n∥β̂n(ω)∥2

(4) distribution F (x)
(a) median

F (0) = 1/2
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(b) density f(x)
f(0) > 0

(5)
γτ = P (ϵtϵt+τ < 0)

(6)

S(ω) =
∞∑

τ=−∞
(1− 2γτ ) cos(ωτ)

(7) coef. of Gaussian

η2 =
1

4f2(0)
(8) coef. of chi squared

S = diag{S(ω1), S(ω1), . . . , S(ωq), S(ωq)}
(9) chi squared

Zj ∼ i.i.d. χ2(2).

4.2. Assumptions.

(B1) (A5)
(B2)

∑∞
τ=0|1− 2γτ | < ∞

(B3) f(x) is continuously differentiable in a neighborhood of x = 0
(B4) matrix condition

Djkn = n−1
n∑

t=1

xt(ωj)xt(ωk) =
1

2
δj−kI +O(1).

5. Main results

n1/2vecβ̂n(ωj) ∼ N(0, 2η2S),

Ln(ωj) ∼
1

2
η2S(ωj)Zj

6. words

1. commence 始める
2. dwell いる
3. minutiae ささいな事柄
4. predator-prey 捕食者-犠牲者
5. sonar ソナー

7. Further Reading

7.1. robustness. Robust statistics, Maronna, Martin and Yohai



毎回のまとめの時、余った定理など

GEN RYU

reference

• cargo[1966]
some extension of the integral test

Part 1. Cargo[1966]

1. theorems

Theorem 1.1. If f is a real-valued function defined on [ 0,∞) such that sup{V n
0 f :=

1, 2, . . . } < ∞, then
∑∞

k=1 f(k) and
∫∞
0 f(t) dt converge or diverge together.

note. Of course, the spectral density and periodogram are real-valued functions defined on
[ 0,∞). It means that m we defined in the paper is also real-valued function. What does
V mean? Let me check!

Theorem 1.2. Let f be a nonnegative function defined on [ 0,∞). Then
∑∞

k=1 f(k) and∫∞
0 f(t) dt converge or diverge together provided

sup{V n
0 f : n = 1, 2, . . . } < ∞,

where V n
0 f denotes the total variation of f on [ 0, n ]

note. What is the sufficient condition for finite total variation? Or spectral density already
satisfies?

2. important equation

Corollary 2.1 (Pólya p.37). If a function g ha finite total variation V on [ 0, 1 ], then
∣∣∣∣∣

∫ 1

0
g(x) dx− 1

n

n∑

k=1

g(
k

n
)

∣∣∣∣∣ ≤
V

n
.

Calculation. If f is a function satisfying condition (5),

sup{V n
0 f : n = 1, 2, . . . } < ∞,

Date: July 11, 2012.
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then we have
∫ n

0
f(t) dt−

n∑

k=1

f(k) = n

∫ 1

0
f(nx) dx−

n∑

k=1

f(k)

= n

[∫ 1

0
gn(x) dx− 1

n

n∑

k=1

gn

(
l

n

)]
,

where gn(x) is, by definition, equal to f(nx) for all x in [ 0, 1 ].

Theorem 2.2 (Hardy(1910)). Let f be a nonnegative function which is defined and has
a continuous derivative on [ 0,∞]. Then

∑∞
k=1 f(k) and

∫∞
0 f(t) dt converge or diverge

together provided ∫ ∞

0
|f ′(t)| dt < ∞.

2.1. others. (3)
∞∑

k=1

sup{|f(k)− f(t)| : k − 1 ≤ t ≤ k} < ∞.

(6)

|
n∑

k=1

f(k)−
∫ n

0
f(t) dt| ≤ V n

0 f n = 1, 2, . . . .

(7)
∫ ∞

0
f(t) dt−

n∑

k=1

f(k).

Part 2. something concerning stable

3. For stable

Corollary 3.1 (Can et al.(2010) Cor 3.3). Let α ∈ (0, 2) and

F{f ∈ L2[0,π] : a(f) = (a1(f), a2(f), . . . , ) ∈ lα log l},

where a(f) is defined by

ah(f) =

∫ π

0
cos(λh)f(λ)dλ, h ∈ Z.

Then we have

n(log n)−1/α[ Jn,ϵ(f)− a0(f)γn,ϵ(0) ]f∈F
fidi−−→ 2[Y (a(f)) ]f∈F ,

(n/ log n)1/α[ J̃n,ϵ(f)− a0(f) ]f∈F
fidi−−→ 2[ Ỹ (a(f)) ]f∈F .
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Proposition 3.2 (K&M(1996) Prop 3.5). Let (Xt)t∈Z be a linear process with coefficients
(ψj)j∈Z satisfying

∑∞
j=−∞ |j||ψj |δ < ∞ and suppse that α ∈ (0, 2). Furthermore, assume

that f is defined on [−π,π] such that g(·) = f(·)|φ(·)|2 is continuous and
∞∑

t=1

∣∣∣∣
∫ x

−π
g(λ) cos(tλ) dλ

∣∣∣∣
µ

< ∞

for some x ∈ [−π,π] and some 0 < µ < α. Then

(γ2n,X , Tn, xn

∫ x

−π
(In,X(λ)−|ψ(λ)|2Tn)f(λ)dλ) ⇒

⎛

⎝Y0ψ
2, Y0, 2Z1

( ∞∑

t=1

∣∣∣∣
∫ x

π
g(λ) cos(tλ) dλ

∣∣∣∣
α

|
)1/α

⎞

⎠ ,

with Y0 independent of (Zt)t∈Z.

Lemma 3.3 (Can&Mikosch(2010) Lem 3.1). For every m ≥ 1,
(
nγn,Z(0)

n2/α
,

nγn,Z(h)

(n log n)1/α
, h = 1, . . . ,m

)
⇒ (Y0, Y1, . . . , Ym).

what is important here is that the self-normalized periodogram is employed in the func-
tional form, that is

Jn,X(f) =

∫ π

0
In,X(λ)f(λ) dλ,

where f is any function for appropriate classes of real-valued functions f ∈ F on [0,π].
Let Y (a) and Ỹ (a) be defined as

Y (a) =
∞∑

k=1

akYk,

Ỹ (a) = Y (a)/Y0.

Before defining the class F , we will have a proper class for a,

a ∈ lα log l =

{
a = (a1, a2, . . . ) ∈ lα :

∞∑

k=1

|ak|α log+
1

|ak|
< ∞

}
.
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YAN LIU

1. Reference

Künsch (1984), AS.

2. notations

2.1. Notations.

1. h(x) a known probability density on R
2. σ2 variance of Ui

3. ρ(x, n)m m-dimensional marginal distribution of stationary processes
4. Mm the set of ρ(x, n)m

5. θ ∈ Θ ⊂ Rq (q ≤ p+ 2) unknown parameter
6. T a functional Mm → Θ (or restrict T to a certain subset of Mm)
7. γ∗ = supx|ICT (x, θ)| gross error sensitivity
8. θ = (θ1, θ2)
9. θ1 = σ and θ2 = (η,β1, . . . ,βp)
10. κ = (κ1,κ2)
11. ψ = (ψ1,ψ2)

2.2. Fundamental Setting.

(i) AR(p) process

(Xi − η) =
p∑

k=1

βk(Xi−k − η) + Ui, i.i.d. Ui

Using x∗i = xi − η, κ is defined by

κ(x1, . . . , xp+1; θ) =
∂

∂θ
log

1

σ
h

(
x∗p+1 −

∑
βkx∗p+1−k

σ

)

Furthermore, let u denote

u = x∗p+1 −
∑

βkx
∗
p+1−k

(ii) m-dimensional marginal distributions

Date: August 24, 2014.
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(a) Define xi = xi−kn if i > kn for k ∈ N;
(b) m-dimensional marginal distributions

ρ(x, n)m = n−1
n∑

i=1

δ(xi, . . . , xi+m−1),

where δ(xi, . . . , xi+m−1) is the point mass at x ∈ Rm.
(iii) M-estimator defined by

n−m+1∑

j=1

ψ(xj , · · · , xj+m−1; θ̂n) = 0.

(iv) Choice of the functional T : for T (µm
θ ) = θ,

θ̂n(x1, . . . , xn) = T (ρ(x, n)m).

(v) Any version of the influence function ICT (x, θ)∫
ICT (x, θ)µθ(dxm|xm−1, · · · , xm−p) = 0.

(vi) Asymptotical variance-covariance matrix

C(T, θ) =

∫
ICT (x, θ)ICT (x, θ)

Tµm
θ (dx).

Lemma 2.1. If {Xi}i∈Z is stationary ergodic process, then

ρ(x, n)m → µm as n → ∞.

2.3. Hampel’s optimality problem. Minimize the trace of the asymptotic covariance
matrix C(T, θ) among all estimators of (iv) which have an influence function and for which

γ∗ = sup
x
|ICT (x, θ)| ≤ c(θ).

2.4. Huber function.
Hc(x) = xmin(1,

c

|x|)

3. Fundamental Theorems

Theorem 3.1 (Künsch (1984), Theorem 1.1). A functional L : Mm → R is of the form
L(νm) =

∫
t(x)νm(dx) with t bounded and continuous iff L is affine and weakly continuous.

Theorem 3.2 (Künsch (1984), Theorem 1.2).
∫
t(x)νm(dx) = 0 for all νm ∈ Mm iff

t(x1, . . . , xm) = g(x1, . . . , xm−1)− g(x2, · · · , xm) with an arbitrary g.

Theorem 3.3 (Künsch (1984), Theorem 1.3). Let µ denote the distribution of an AR(p)-
process. If Rm → R, m > p, is continuous, sup|f(x)|/(1+ |x|) < ∞ and

∫
f(x)µm(dx) = 0,

then there exists a continuous function g : Rm−1 → R with sup|g(x)|/(1 + |x|) < ∞ and
∫

f(x1, . . . , xm) + g(x1, . . . , xm−1)− g(x2, · · · , xm)µ(dxm|xm−1, · · · , xm−p) = 0
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for all x1, . . . , xm−1. g is unique up to an additive constant.

4. optimal robust estimators

Theorem 4.1. Suppose σ is known and h(x) = h(−x). If the bound c(θ) is such that
∫

Hc(θ)(A(θ)κ(x, θ))κ(x, θ)
Tµp+1

θ (dx) = Id

has a solution A(θ) for all θ, then the solution of Hampel’s optimal problem is given by
{
m = p+ 1,

ψ(x, θ) = Hc(θ)(A(θ)κ(x, θ)).

Theorem 4.2. If ψ1(x1, . . . , xp+1; θ) = χ
(
u
σ

)
with χ(·) even and ψ2 is one of the opti-

mal solutions of Hampel’s problem, then σ̂ is asymptotically independent of θ̂2 and the
asymptotic covariance for θ̂2 is the same as for known σ.

5. words

6. Further Reading

6.1. robustness. Robust statistics, Maronna, Martin and Yohai
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Let a1, . . . , ap1 , b1, . . . , bp2 be an arbitrary (p1+ p2)−tuple of real numbers, and consider
the sequence

Xt − n−1/2
p1∑

i=1

aiXt−i = ϵt + n−1/2
p2∑

i=1

biϵt−i, t ∈ Z, n = 1, 2, . . .

of stochastic difference equations. For n sufficiently large, all the roots of the characteristic
equation

zp1 − n−1/2
p1∑

i=1

aiz
p1−i = 0, z ∈ C

lie inside the unit-circle.
The hypothesis is denoted by H0:

l0n(x) =
n∏

t=1

f(xt),

The alternative is denoted by H1:

l1n(x) =

∫ n∏

t=1

f(xt−n−1/2
p1∑

i=1

aixt−i+
t−1∑

u=1

gu(xt−u−n−1/2
p1∑

i=1

aixt−u−i)+
t+p2−1∑

u=t

guet−u)

dGab(x−p1+1, . . . , x0)f(e−p2+1) . . . f(e0) de−p2+1 . . . deo.

Furthermore, consider the likelihood ratio

Ln(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1n(x)

l0n(x)
if l0n(x) > 0

1 if l1n(x) = l0n(x) = 0

∞ if l1n(x) > l0n(x) = 0.

Date: February 4, 2013.
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1. definitions

1.1. linear serial rank statistics in the paper.

Sn =
1

n− p

n∑

t=p+1

an(R
(n)
t , R(n)

t−1, . . . , R
(n)
t−p)

where an(· · · ) is some given score function and R(n)
t is the rank of the observation made

at time t in an observed series of length n.

Lemma 1.1. The variance of (n− p)Sn =
∑n

t=p+1 an(R
(n)
t , R(n)

t−1, . . . , R
(n)
t−p) is

(1.1) D2((n− p)Sn) =

(n− p)Var(a(Rp+1, . . . , R1)) + 2
p∑

i=1

(n− p− i)Cov(a(Rp+1+i, . . . , Ri+i), a(Rp+1, . . . , R1))

+ [ (n− 3p)(n− 3p− 1) + p(2n− 5p− 1) ]Cov(a(R2p+2, . . . , Rp+2), a(Rp+1, . . . , R1)).

Corollary 1.2.

(1.2) D2((n− p)Sn) ≤ (n− p)(2p+ 1)Var(a(Rp+1, . . . , R1))

+ nCov(a(R2p+2, . . . , Rp+2), a(Rp+1, . . . , R1)).

Lemma 1.3.

(1.3) E[ a(Rp+1, . . . , R1) ]

=
(n− p− 1)(n− p− 2) · · · (n− 2p− 1)

n(n− 1) · · · (n− p)
E[ a(Rp+1, . . . , R1)|R2p+2, . . . , Rp+2 ]

+
p+1∑

l=1

(n− p− 1)(n− p− 2) · · · (n− 2p− 1 + l)

n(n− 1) · · · (n− p)

∑

p+2≤j1 ̸=···jl≤2p+2

∑

1≤k1<k2<···<kl≤p+1

E[ a(Rp+1, . . . , Rkl+1RjlRkl−1, . . . , Rk1+1Rj1Rk1−1, . . . , R1)|R2p+2, . . . , Rp+2 ]

Lemma 1.4.

n|Cov(a(Rp+1, . . . , R1), a(R2p+2, . . . , Rp+2))| ≤ KE[ a2(Rp+1, . . . , R1) ]

1.2. score functions and score-generating function. The authors assume that the
score functions an(· · · ) are such that there exists a function J = J(vp+1, vp, . . . , v1), defined
over [0, 1]p+1, such that

0 <

∫

[0,1]p+1
J2(vp+1, · · · , v1) dvp+1 · · · dv1 < ∞

and

lim
n→∞

E[ (J(Up+1, · · · , U1)− an(R
(n)
p+1, · · · , R

(n)
1 ))2|H(n)

0 ] = 0
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This assumption is satisfied most of the time when an is of the form

an(i1, i2, · · · , ip+1) = J(
i1

n+ 1
,

i2
n+ 1

, · · · , ip+1

n+ 1
).

1.3. a discrete-time stationary white noise. a sequence {ϵt; t ∈ Z} of independent
and identically distributed random variables with means E[ϵt] = 0, t ∈ Z.

1.4. finite Fisher’s information related to the location parameter. f(x) is abso-
lutely continuous on finite intervals, and

0 < I(f) =

∫ ∞

−∞

(
f ′(x)

f(x)

)2

f(x) dx < ∞.

1.5. distribution function.

F−1(u) = inf{x|F (x) ≥ u}, 0 < u < 1.

Put

φ(F−1(u)) = −f ′(F−1(u))

f(F−1(u))
, 0 < u < 1.

This function can also be written a.e. as

φ(x) = −f ′(x)

f(x)
, x ∈ R.

There are many properties like:

(1)
∫ ∞

−∞
φ(x)f(x) dx = 0;

(2)
∫ ∞

−∞
φ2(x)f(x) dx = I(f);

(3)
∫ ∞

−∞
xφ(x)f(x) dx = 1;

(4)
∫ ∞

−∞
φ′(x)f(x) dx = I(f).

(5) σ2I(f) is independent of the scale transformation.
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1.6. the Green’s function. gu associated with the operator C(L) = 1 +
∑p

i=1 ciL
i (the

ci’s are real and cp ̸= 0) is the value in t = u of ψt of the homogeneous difference equation

ψt +
p∑

i=1

ciψt−i = 0, t ∈ Z,

taking on initial values ψ0 = 1,ψ−1 = · · · = ψ−p+1 = 0.

Lemma 1.5.
w∑

u=v

|gu| ≤
w∑

u=[ (v−1)/p ]+1

(pbMn−1/2)u ∀w ≥ v ≥ 0.

Corollary 1.6. For n > 4(pbM )2,

∞∑

u=pv+1

≤ 2(pbMn−1/2)v+1 = o(n−v/2) ∀v ≥ 0.

1.7. the distribution function of p1 successive values of {Xt}. Gab(xt+1, . . . , xt+p1).

1.8. ARE–asymptotic relative efficiency. (TRT pp.317) Assume that the asymptoti-
cally most powerful test for H against q may be based on a statistic S0 which is asymptoti-
cally normal (0,σ2) underH0 and which is asymptotically normal (µ0,σ2o) under q. Further,
consider another test based on a statistic S, which is asymptotically normal (0,σ2) under
H0, and which is asymptotically normal (µ.σ2) under q. Then the number

e =

(
µσo
µ0σ

)2

will be called the asymptotic efficiency of the S-test. It is also called the Pitman asymptotic
efficiency.

For the definition in the paper, the efficiency is extended to any two linear serial rank
statistics. A test statistic S̄n such that e(S̄n, Sn) ≥ 1 for any linear serial rank statistic Sn

will be asymptotically the most efficient statistic (in Pitman’s sense) within the class of
linear serial rank statistics.

1.9. run statistic.

an(i1, i2) =

{
1 if (2i1 − n− 1)(2i2 − n− 1) < 0

0 if (2i1 − n− 1)(2i2 − n− 1) ≥ 0.

1.10. turning point statistic.

an(i1, i2, i3) =

⎧
⎪⎨

⎪⎩

1 if i1 > i2 < i3

1 if i1 < i2 < i3

0 elsewhere.
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2. the main points of the paper

(1) A class of linear serial rank statistics is introduced to test white noise against
alternatives of ARMA serial dependence.

(2) Using LeCam’s notion of contiguity, the asymptotic normality of the proposed
statistics is established.

(3) An explicit formulation of the asymptotically most efficient score generating func-
tions is provided.

(4) The asymptotic relative efficiency of the proposed procedures is studied with respect
to their normal theory counterparts based on sample autocorrelations.

この論文のすごいところは、n samples ∼ (0, ?)を手にした時、この n samplesは確かに中心
極限定理により、漸近的に正規分布に従いそうだが、実際正規分布に従ったところで、これ
らの標本が独立か、ARMAの形を持つ従属標本かについて rank statisticsによる最適検定が
可能であることを示した点である。

3. the process of the paper

(1) Introduction
(2) Notation and basic assumption
(3) Asymptotic distribution of likelihood ratios (pp.1160)
(4) Asymptotic distribution of linear serial rank statistics (pp.1162)
(5) Asymptotic efficiency of linear serial rank statistics (pp.1166)
(6) Examples and the table (pp.1172)
(7) Appendix 1-6 (pp.1173/pp.1173/pp.1176/pp.1178/pp.1179/pp.1180)
(8) References (pp.1181)

4. basic assumptions and theorems

4.1. assumptions.
Let {ϵt; t ∈ Z} be a discrete-time stationary white noise. Assume that it has a density
f(x), and that the following conditions are satisfied:

(1) ϵt has finite moments up to the third order; denote its variance by σ2.
(2) f(x) is a.e. derivative, and its derivative f ′(x) satisfies

∫ ∞

−∞
|f ′(x)|dx < ∞

(3) f(x) has finite Fisher’s information I(f).
(4) Assume φ(x) is a.e. derivative, and its derivative φ′(x) satisfies a Lipschitz condition

|φ′(x)− φ′(y)| < A|x− y|, a.e.

4.2. asymptotic distribution of likelihood ratios. First, the authors established the
contiguity between the hypotheses:
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Proposition 4.1. Under H0,

logLn(X1, . . . , Xn) = L0
n(X1, . . . , Xn)−

d2

2
+ 0p,

where

L0
n(X) = n−1/2

n∑

t=p+1

φ(Xt)
p∑

i=1

diXt−i

di =

⎧
⎪⎨

⎪⎩

ai + bi 1 ≤ i ≤ min(p1, p2)

ai p2 < i ≤ p1 if p2 < p1

bi p1 < i ≤ p2 if p1 < p2

p = max(p1, p2) and d2 =
∑p

i=1 d
2
iσ

2I(f).

Moreover, L0
n

d−→ N (0, d2).

The form of this asymptotic distribution shows that, for n sufficiently large, there will
be little difference, from a statistical point of view, between AR, MA and ARMA models!!

4.3. asymptotic distribution of linear serial rank statistics. In the paper, the au-
thors proposed the linear serial rank statistics for the models as follows:

Sn =
1

n− p

n∑

t=p+1

an(R
(n)
t , R(n)

t−1, . . . , R
(n)
t−p),

mn = E[Sn|H(n)
0 ] =

1

n(n− 1) · · · (n− p)

∑

1≤i1 ̸=··· ̸=ip+1≤n

an(i1, · · · , ip+1).

The authors established the asymptotic equivalence of (n− p)1/2(Sn −mn) with Sn − En,
where

Sn(X) = (n− p)−1/2
n∑

t=p+1

J(F (Xt), F (Xt−1), . . . , F (Xt−p))

En(X) =
(n− p)1/2

n(n− 1) · · · (n− p)

∑

1≤t1 ̸=··· ̸=tp+1≤n

J(F (Xt1), . . . , F (Xtp+1)).

It is also established that n−1/2(Sn − En) and n−1/2L0
n are asymptotically equivalent to

U-statistics.

Proposition 4.2. Under H0,
(√

n(Sn −mn)
logLn

)
d−→ N

((
0

−1
2

∑p
i=1 d

2
iσ

2I(f)

)
,

(
V 2 ∑p

i=1 diCi∑p
i=1 diCi

∑p
i=1 diσ

2I(f)

))
,
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where

(4.1) V 2 =

∫

[0,1]p+1
[ J∗(vp+1, · · · , v1) ]2dv1 · · · dvp+1

+ 2
p∑

j=1

∫

[0,1]p+1+j
J∗(vp+1, · · · , v1)J∗(vp+1+j , · · · , v1+j)dv1 · · · dvp+1+j

and

Ci =

∫

[0,1]p+1
J∗(vp+1, · · · , v1)

p−i∑

j=0

φ(F−1(vp+1−j))F
−1(vp+1−j−i)dv1 · · · dvp+1

Proposition 4.3. Under H1,

√
n(Sn −mn)

d−→ N (
p∑

i=1

diCi, V
2).

4.4. asymptotic efficiency of linear serial rank statistics.

Proposition 4.4. An asymptotically optimal linear serial rank test for H0 against Hd is
provided by any statistic Sd

n with score-generating function (up to additive and multiplicative
constants) given by

Jd(vp+1, · · · , v1) =
p∑

i=1

di
p+ 1− i

p−i∑

j=0

φ(F−1(vp+1−j))F
−1(vp+1−j−i).

Under Hh(h ∈ Rp),

n1/2(Sd
n −md

n)
d−→ N (

p∑

i=1

hidiσ
2I(f), V 2

d ),

where V 2
d =

∑p
i=1 d

2
iσ

2I(f).

This optimality result relies on the following lemma.

Lemma 4.5. Let Sn be a linear rank statistic with score-generating function J∗(vp+1, · · · , v1),
and let

J∗
0 (vp+1, · · · , v1) = (σ2I(f))−1

p∑

i=1

Ci

p+ 1− i

p−i∑

j=0

φ(F−1(vp+1−j))F
−1(vp+1−j−i).

Denote by S0
n a linear serial rank statistic associated with J∗

0 . Then e(Sn, S0
n) ≤ 1 for any

alternative Hd
n.

Proposition 4.6. Under H0,⎛

⎜⎜⎜⎝

√
nr1
...√
nrp

logLn

⎞

⎟⎟⎟⎠
d−→ N

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

0
...
0

−1
2

∑p
i=1 d

2
iσ

2I(f)

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

d1

I
...
dp

d1 . . . dp
∑

d2iσ
2I(f)

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠
.
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Corollary 4.7. Under Hd,

n1/2
p∑

k=1

αkrk
d−→ N (

p∑

i=1

αidi,
p∑

i=1

α2
i )

Corollary 4.8. The asymptotically most efficient (in Pitman’s sense) linear combination
of the rk’s against Hd is

∑p
k=1 dkrk.

Proposition 4.9. Denote by e the ARE of the asymptotically optimal serial rank statistic
with respect to the asymptotically optimal combination of autocorrelations

∑p
k=1 dkrk, then

we obtain
e = σ2I(f).

5. the history of nonparametric methods

(1) Dufour et al. (1982) and
(2) Hotelling and Pabst (1936) → run test / turning point test
(3) Wald and Wolfowitz (1943) → Spearman’s autocorrelation coefficient
(4) Jogdeo (1968) → not adapted to time-seiries situations
(5) Knoke (1977)→ the power of serial rank procedures / ARE / Spearman’s first-order

autocorrelation coefficient / turning point statistic
(6) Gupta and Govindarajulu (1980)→ locally most powerful rank statistic (particular

case)
(7) Aiyar (1981) → van der Waerden statistic (particular case)
(8) Bartels (1982)→ von Neumann’s test / more efficient than the run test / parametric

von Neumann test
(9) Bell et al. (1970) → a highly systematic and theoretically-based approach
(10) Dufour (1982) → sign / Wilcoxon / signed rank / van der Waerden tests
(11) Govindarajulu and Dwass (1983) the same to the above
(12) Govindarajulu (1983) An overall review of some of these procedures

6. words

(1) tractable 扱いやすい
(2) viz. = that is, namely すなわち
(3) scattered 散在している
(4) piecemeal すこしずつの、ばらばらの
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1. Definitions

1.1. discrete sequences of estimators. [Bickel(1982)] The discrete sequences of estima-
tors {θ̄n} satisfies that θ̄n is given by one of the vertices of {θ : θ = n−1/2(i1, . . . , ip+q), ij ∈
Z} nearest to θn.

Part 1. Local asymptotic normality for ARMA process

2. Theorems

Theorem 2.1 (LAN property for ARMA models). Let {hn} ⊂ Rp+q be a bounded sequence
and θn = θ0 + n−1/2hn. Under our assumptions (A1), (A2) and (A3), we have for

∆n(θ) =
2√
n

n∑

j=1

ϕ̇(ej(θ))Z(j − 1; θ0, θ), ϕ̇ = −f ′/2f,

the following two results:

log[ dPn,θn/dPn,θ0 ]− hTn∆n(θ0) +
1

2
hTn I(f)Γ(θ0)hn → 0,

in Pn,θ0-probability, where Γ(θ0) is defined in Theorem 3.5 below (approximation of the
log-likelihood ratio).

L(∆n(θ0)|Pn,θ0) ⇒ N (0, I(f)Γ(θ0)),

where ”⇒” denotes weak convergence (asymptotic normality of the approximating statistic).

Corollary 2.2. Under the same assumption as above {Pn,θ0} and {Pn,θn} are contiguous
in the sense of Definition 2.1, Roussas (1972), page 7, and

L(∆n(θ0)− I(f)Γ(θ0)hn|Pn,θn) ⇒ N (0, I(f)Γ(θ0)).

Date: May 15, 2012.
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3. The sufficient conditions for local asymptotic normality

The 4 theorems below guarantee that the sufficient conditions are fulfilled.

Theorem 3.1. For each θ0 ∈ Θ, the random functions φj(θ0, ·) are differentiable in q.m.
[Pθ0 ] uniformly in j ≥ 1. That is, there are (p+q)-dimensional r.v.’s ˙phij(θ0) = ϕ̇(e0j )Z(j−
1; θ0, θ0) = ϕ̇(e0j )Z

0(j−1) [the q.m. derivative of φj(θ0, θ) with respect to θ at θ0] such that

φj(θ0, θ0 + λh)− 1

λ
− hT φ̇j(θ0) → 0, in q.m. [Pθ0 ] as λ → 0

uniformly on bounded sets of h ∈ Rp+q and uniformly in j ∈ N. Finally, φ̇j(θ0) is measur-
able with respect to Aj.

Theorem 3.2. For each θ0 ∈ Θ and each h ∈ Rp+q, the sequence {(hT φ̇j(θ0))}, j ∈ N, is
uniformly integrable with respect to Pθ0.

Theorem 3.3. For each θ0 ∈ Θ and j ≥ 1 let the (p+ q)× (p+ q)-dimensional covariance
matrix Γj(θ0) be defined by

Γj(θ0) = 4Eθ0 [ φ̇j(θ0)(̇φ)
T
j (θ0) ] = I(f)Eθ0 [Z(j − 1; θ0, θ0)Z

T (j − 1; θ0, θ0) ].

Then Γj(θ0) → Γ(θ0)I(f), as j → ∞, in any one of the standard norms in Rp+q, and Γ(θ0)
is positive definite.

Theorem 3.4. (i) For each θ0 ∈ Θ, each h ∈ Rp+q and for the probability measure Pθ0,
the WLLN holds for the sequence {[hT ϕ̇j(θ0) ]2, j ∈ N}. Also
(ii)

1

n

n∑

j=1

{Eθ0 [ (h
T ϕ̇j(θ0))

2|Aj−1 ]− [hT ϕ̇j(θ0) ]
2} → 0, as n → ∞,

in Pθ0-probability.

Part 2. Existence and construction of LAM estimates

Lemma 3.5. Under assumptions (A.1), (A.2), (A.3) we have for any sequence {Zn} of
estimates the following implication:

√
n(Zn − θ0)−

Γ(θ0)−1

I(f)
∆n(θ0) = oPθ0

(1) ({Zn} is called θ0-regular)

implies that {Zn} is LAM.

4. Assumptions and the interpretation of it

Assumption 4.1. There exists a sequence {θ̄n} of estimators which satisfies
√
n(θ̄n − θ0) = OPθ0

(1).

This assumption holds for estimators for which the usual CLT is valid, i.e., for all the
standard estimators. (See Anderson(1971) Thm 5.5.7). Fuller(1976) sec 8.4.
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Theorem 4.2 (Existence of LAM estimators). Assume {θ̄n} ⊂ Θ is discrete and
√
n-

consistent for θ0 ∈ Θ. Then θ̂n defined by (4.2) and (4.3) below is regular:

θ̂n = θ̄n +
1√
n

Γ̂n(θ̄n)−1

I(f)
∆n(θ̄n),

Γ̂n(θ) =
1

n

n∑

j=1

Z(j − 1; θ, θ)ZT (j − 1; θ, θ).

Part 3. Construction of adaptive estimates

Theorem 4.3. Let {θ̄n} ⊂ Θ be a discrete and
√
n-consistent sequence of estimators of

θ0. Under our assumptions (A.1)-(A.6)

∆̃n(θ̄n)−∆n(θ̄n) = oPθ0
(1)

holds, if cn → ∞, gn → ∞, σ(n) → 0, dn → 0, σ(n)cn → 0, gnσ(n)−4/n → 0 and nσ(n)
stays bounded.



LONG RANGE DEPENDENCE

YAN LIU

1. Reference

Shibata (1980), AS.

2. notations

2.1. Notations.

1. {xt} Gaussian stationary process
2. rl = E(xtxt+l), autocovariance

3. Fundamental Setting

3.1. Basics.

(i) Model

xt +
∞∑

j=1

ajxt−j = et, t = . . . ,−1, 0, 1, . . . ,

where a1, a2, . . . are real numbers, et ∼ N (0,σ2).

(ii) the k × k covariance matrix

R(k) = (rij , 1 ≤ i, j ≤ k),

where rij = r|i−j|.
(iii) the associated power series

A(z) = 1 +
∞∑

j=1

ajz
j .

3.2. Assumptions.

(A.1)
∑

1≤j<∞|aj | < ∞.
(A.2) A(z) is nonzero for |z| ≤ 1.
(A.3)

Date: November 12, 2014.
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4. Main Results

Lemma 4.1. For any 1 ≤ k ≤ Kn,

NE∥
∑

Kn≤t≤n−1

Xt(k)(et+1,k − et+1)/N∥2 ≤ k∥a − a(k)∥2∥R∥(
∑

−∞<j<∞
|rj | + ∥R∥),

where r−j = rj (j = 1, 2, . . . ).

5. Further Reading

•

6. words

1.

7. New knowledge

•



(S)ON ESTIMATING THE INTENSITY OF LONG-RANGE
DEPENDENCE IN FINITE AND INFINITE VARIANCE TIME SERIES

GEN RYU

1. Summary

The study includes both distributions with finite variance and infinite variance innova-
tions. The model is also assumed not only with long-range dependence, the short depen-
dence is also used in the paper.

When generating series with infinite variance, we will use independent symmetric α-
stable variables as innovations in FARIMA(p, d, q) series, and skewed stable and Pareto
distributions as the innovations in a FARIMA(0, d, 0) series. The parameter d is restricted
to interval [ 0, 1− 1/α).

note. The relation between the index of the similarity and ”d” in FARIMA is shown as

H = d+ 1/α.

note2. The parameter d plays the role of a differencing parameter in the FARIMA model.

note3. The X(m) defined below has the relation with S,

X(m) ∼d mH−1S,

where S is a process which depends on the distribution of X but does not depend on m.

2. Methods

2.1. Whittle Method. The Whittle estimator gave the best performance for the series
used in the study. If the parametric form of a time series is known, then the Whittle
estimator is to be recommended. Even if the exact form is not known, but the maximum
order (p, q) is known, this estimator can give good results.

Q(η) =

∫ π

−π

I(η)

f(ν; η)
dν +

∫ π

−π
log f(ν; η)dν.

note. It is d and not H which is estimated even in the infinite variance case.

note2. If the model is under specified, the Whittle estimator becomes more biased than
any of the others used here.

Date: May 28, 2012.
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2.2. Local Whittle Method. The second recommended method is Local Whittle esti-
mator, which is proposed by Robinson(1995).

One estimates d by minimizing

R(d) = log

⎛

⎝ 1

M

M∑

j=1

I(νj)

ν−2d
j

⎞

⎠− 2d
1

M

M∑

j=1

log νj .

note. There are as yet no corresponding theoretical results.

2.3. Periodogram Method. The periodogram is defined as

I(ν) =
1

2πN

∣∣∣∣∣∣

N∑

j=1

X(j)eijν

∣∣∣∣∣∣

2

,

where ν is the frequency, N is the length of the series, and X is the time series. I(ν) is
an estimator of the spectral density of X, and a series with long-range dependence will
have a spectral density proportional to |ν|−2d close to the origin. A log-log regression thus
provides an estimate of d. In the infinite variance case the problem is significantly more
complicated.

note. There are no theoretical results for the periodogram regression method. The pro-
portionality to |ν|−2d as ν → 0, however, seems to hold empirically in the infinite variance
case as well.

2.4. The estimator for H in robust order.

2.4.1. Variance of Residuals Method(VR). The Variance of Residuals method was intro-
duced by Peng et al.(1994). First the series is divided into blocks of size m. Then, within
each block, the partial sums of the series are calculated,

Y (t) =
t∑

i=1

Xi.

A least-squares line, a+ bt, is fitted to the partial sums within each block, and the sample
variance of the residuals is computed,

1

m

m∑

t=1

(Y (t)− a− bt)2.

As the calculation in the paper, the slope of the log-log plot shows 2H. In practice, this is
not recommended because the scatter is too large for the infinite variance series.
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2.4.2. Absolute Value Method. Let X(m)(k) be

X(m)(k) =
1

m

km∑

i=(k−1)m+1

Xi, k = 1, 2, . . . , [N/m ].

Then we take the first absolute moment of this series,

AM (m) =
1

N/m

N/m∑

k=1

|X(m)(k)− X̄|,

where X̄ is the overall series mean. The same thing can be concluded like above, that is,
the slope of log-log lime is the function of H, H − 1.

note. The method loses efficiency, especially for values for α close to 1.

3. Interesting facts

3.1. About S in the first section. In the finite variance case S is Fractional Gaussian
Noise (FGN) and in the infinite variance case it is Linear Fractional Stable Noise (LFSN).

The FGN series {Xi, i ≥ 1} is a zero mean, stationary, Gaussian time series whose
autocovariance function at lag h is:

γ(h) =
1

2
{(h+ 1)2d+1 − 2h2d+1 + |h− 1|2d+1}, h ≥ 0,−1/2 < d < 1/2.

For d ̸= 0, the autocovariance satisfies

γ(h) ∼ d(2d+ 1)h2d−1 as h → ∞.

In addition, the spectral density is given by:

f(ν) = Cd(2 sin
ν

2
)2

∞∑

k=−∞

1

|ν + 2πk|2d+2
∼ Cd|ν|−2d as ν → 0.

3.2. About stable distribution. If either Pareto or stable with parameter α, then P (ϵ >
x) ∼ Cx−α as x → ∞, that is, the probability tails decrease slowly, like a power function.
Moreover, Var(ϵ) = ∞ if α < 2, and E|ϵ| = ∞ if 0 < α ≤ 1.

3.3. About long dependence. The FARIMA(p, d, q) family of models is widely used in
the modeling of time series with long-range dependence. These are moving averages

Xn =
n∑

i=−∞
cn−iϵi,

where ck behaves like kd−1 for large k and the ϵi’s are independent, identically distributed
random variables.



SUMMARY-HALLIN1987

GEN RYU

1. the main points of the paper

(1) Quadratic serial rank statistics are introduced to be some optimal tests which
is sensitive against a whole subclass of the alternative in the case of unspecified
alternative.

(2) The asymptotically maximin most powerful quadratic serial rank tests (rank port-
manteau tests) are obtained after deriving their asymptotic distribution tunder the
null hypothesis and contiguous ARMA alternatives.

(3) The asymptotic relative efficiencies of the rank portmanteau tests are derived.

2. notations

2.1. Hd,f . the contiguous ARMA alternatives Hd,f are completely specified by a vector
d = (d1, . . . , dp)′ of real coefficients and a density type f .

2.2. f . an unspecified member of the family of the densities is denoted by f(x), while the
specified is denoted by fσ(x).

3. definitions

3.1. strongly unimodal density. The density f(x) is called strongly unimodal if

(1) − log f(x) is a convex function within some open interval (a, b) such that −∞ ≤
a < b ≤ ∞;

(2)
∫ b
a f(x) dx = 1.

note. Such densities are absolutely continuous within (a, b) and

[− log f(x) ]′ = −f ′(x)

f(x)

is a non-decreasing function.

note2. Normal, Double exponential, Exponential, Logistic, Uniform, Triangular and etc
are strongly unimodal density.

Date: February 4, 2013.
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3.2. asymptotically maximin most powerful tests. a sequence φn of tests is said to
be asymptotically maximin most powerful for the sequence of null hypotheses Hn against
the sequence of alternatives Kn if its power asymptotically reached the envelope power
function β(α, Hn,Kn), i.e. if

lim sup
n→∞

[El(n)φn − α ] ≤ 0, for all l(n) ∈ H(n).

and
lim inf
n→∞

[El(n)φ(n) − β(α, H(n),K(n)) ] ≥ 0 for all l(n) ∈ K(n).

4. assumptions and propositions

4.1. assumptions(1985).
Let {ϵt; t ∈ Z} be a discrete-time stationary white noise. Assume that it has a density
f(x), and that the following conditions are satisfied:

(1) ϵt has finite moments up to the third order; denote its variance by σ2.
(2) f(x) is a.e. derivative, and its derivative f ′(x) satisfies

∫ ∞

−∞
|f ′(x)|dx < ∞

(3) f(x) has finite Fisher’s information I(f).
(4) Assume φ(x) is a.e. derivative, and its derivative φ′(x) satisfies a Lipschitz condition

|φ′(x)− φ′(y)| < A|x− y|, a.e.

4.2. assumptions(1987). Assume (2) and (3) in the assumption(1985) hold.

(1) a density type f means the family of densities {fσ(x) = 1
σf1(

x
σ );σ > 0} indexed by

scale parameter.
(2) The assumptions below is the same to the definition of white noise.

∫
xf(x) dx = 0,

∫
x2f(x) dx = σ2.

note. The existence of the third moment is not assumed.
(3) Letting

φ(x) =
f ′
1(x)

f1(x)
a.e.

note. From this assumption, it is seen that

I(f) = σ−2
∫

φ2(x)f1(x) dx,

that is, σ2I(f) = I(f1).
(4) Assume dp ̸= 0.
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4.3. quadratic serial rank statistics.

Proposition 4.1. Denote by Jµ(vpµ+1, . . . , v1) the score-generating functions associated
with Sµ (µ = 1, . . . , q), and assume that they satisfy

∫

[0,1]p+1
J(vp+1, . . . , v1)

∏

j ̸=i

dvj = 0, (i = 1, . . . , p+ 1).

Then, under H0,

n1/2(S −m)
d−→ N (0,V 2)

where V 2 = (Vµν) i.e. (writing Jµ(vp+1, . . . , v1) for Jµ(vpu+1, . . . , v1)),

(4.1) Vµν =

∫

[0,1]p+1
Jµ(vp+1, . . . , v1)Jν(vp+1, . . . , v1) dvp+1 . . . dv1

+
p∑

k=1

∫

[0,1]p+1+k
{Jµ(vp+1, . . . , v1)Jν(vp+1+k, . . . , vk+1)

+ Jµ(vp+1+k, . . . , v1+k)Jν(vp+1, . . . , v1) dvp+1+k . . . dv1

(µ, ν = 1, . . . , q).

Under Hd,f ,

n1/2(S −m)
d−→ (C ′d,V 2)

where C is a p× q matrix with entries

(4.2) Ciµ =
p−i∑

j=0

∫

[0,1]p+1
Jµ(vp+1, . . . , v1)φ(F

−1
1 (vp+1−j))F

−1
1 (vp+1−j−i) dvp+1 . . . dv1,

(i = 1, . . . , p;µ = 1, . . . , q).

Proposition 4.2. Using the same notation as in Prop 2.1, and assuming that V 2 is of
rank q, the rank statistic

Q = n(S −m)′V −2(S −m).

is, under H0,

Q
d−→ χ2(q),

and under Hd,f

Q
d−→ nonχ2q

and with non-centrality parameter

λf (d) =
1

2
d′CV −2C ′d.
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4.4. testing H0 against Hd,f and asymptotically most powerful test against Hd,f .
Consider the following linear serial rank statistic of order i:

r(i)f =

{
(n− 1)−1

n∑

t=i+1

φ

(
F−1
1

(
Rt

n+ 1

))
F−1
1

(
Rt−i

n+ 1

)
−m

}
/s

where

m =
1

n(n− 1)

∑

1≤i1 ̸=i2≤n

φ1

(
F−1
1

(
i1

n+ 1

))
F−1
1

(
i2

n+ 1

)

and

(s)2 = {n(n− 1)}−1
∑

1≤i1 ̸=i2≤n

{
φ

(
F−1
1

(
i1

n+ 1

))
F−1
1

(
i2

n+ 1

)}2

+
1

3
(n− 2i)(n− i)−1

(
n

3

)−1 ∑

1≤i1 ̸=i2 ̸=i3≤n

{
φ

(
F−1
1

(
i1

n+ 1

))
φ

(
F−1
1

(
i2

n+ 1

))(
F−1
1

i2
n+ 1

)
F−1
1

(
i3

n+ 1

)}

+
1

24
{n2 − n(2i+ 3) + i2 + 5i}(n− i)−1

(
n

4

)−1 ∑

1≤i1 ̸=i2 ̸=i3 ̸=i4≤n

{
φ

(
F−1
1

(
i1

n+ 1

))
φ

(
F−1
1

(
i2

n+ 1

))(
F−1
1

i3
n+ 1

)
F−1
1

(
i4

n+ 1

)}

− (n− i)(m)2.

Assumption 4.3. Assume f to be a strongly unimodal density.

Proposition 4.4.

(1) r(i)f admits the score-generating function

J(i)f (vi+1, . . . , v1) = φ(F−1
1 (vi+1))F

−1
1 (v1){σ2I(f)}−1/2.

(2) Denote by rf the vector of f-rank autocorrelations of orders 1 through q (q arbitrary-
assume q > p). Then, under H0

n1/2rf
d−→ N (0, Iq×q);

under Hd,f

n1/2rf
d−→ N

⎛

⎜⎜⎜⎝
{σ2I(f)}1/2

⎛

⎜⎜⎜⎝

d1
...
dp
0

⎞

⎟⎟⎟⎠
, Iq×q

⎞

⎟⎟⎟⎠
.
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Proposition 4.5. Consider the linear serial rank statistic

S∗
d,f =

p∑

i=1

di
||d||r(i)f

⎛

⎝with ||d|| =
(

p∑

i=1

d2i

)1/2
⎞

⎠ .

Then

(1) under H0,

n1/2S∗
d,f

d−→ N (0, 1);

under Hh,f , h = (h1, . . . , hp) ∈ Rp

n1/2S∗
d,f

d−→ N
(
{σ2I(f)}1/2

p∑

i=1

hidi
||d|| , 1

)
.

note. the mean is a form of inner product between h and the mean in prop 4.4.
(2) The test based on S∗

d,f (at level α) is asymptotically most powerful, within the class
of all tests of level α, for testing H0 against Hd,f .

4.5. Testing H0 against Hd,f (d unspecified, f specified).

Assumption 4.6. Assume f and g to be a strongly unimodal density.

Proposition 4.7. The quadratic serial rank statistic

Q∗
f =

p∑

i=1

(n− i)(r(i)f )
2 = n

p∑

i=1

(r(i)f )
2 + op(1)

is

(1) under H0

Q∗
f

d−→ χ2(p);

under Hd,g,

Q∗
f

d−→ nonχ2(p);

with non-centrality parameter

(a) λ∗
f,g(d) =

1

2
||d||2

{∫
φ(F−1

1 (u))φg(G
−1(u)) du

∫
F−1
1 (v)G−1(v) dv

}2

{σ2I(f)}−1

Under Hd,f , (a) reaches, for given ||d|| = d, its maximal value λ∗
f (d) =

1
2 ||d||

2σ2I(f).
(2) Q∗

f provides, at any level α ∈ (0, 1) and for any value of d > 0, an asymptotically
maximin most powerful test for H0 against K(d).

Proposition 4.8. The ARE of an f− rank portmanteau statistic Q(n)∗
g with respect to

another one, Q(n)∗
h , when testing against Hd,f , is given by

ef (Q
(n)∗
g , Q(n)∗

h ) =
σ2I(h)

σ2I(g)

( ∫
φg(G−1(u))φf (F−1(u)) du

∫
G−1(v)F−1(v) dv∫

φh(H−1(u))φf (F−1(u)) du
∫
H−1(v)F−1(v) dv

)2
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5. words

(1) insensitive 感受性の鈍い
(2) vast 膨大な
(3) diffuse 広がった
(4) intuitively appealing 直感に訴えるよ
うな

(5) remedy 手段
(6) allied 同類の
(7) overall 全体にわたる
(8) revisited 再度確認される
(9) in the sequel 後ろで

(10) This provides the incentive for our
considering quadratic statistics. こ
れによって我々の 2次統計量に対する
目的意識を感じた。

(11) in the subsequent sections 次の節で
(12) inferential 推定の
(13) eventual 究極的な
(14) superiority 優越
(15) allow for 考慮する
(16) contradictions 矛盾



(S)ON ESTIMATING THE INTENSITY OF LONG-RANGE
DEPENDENCE IN FINITE AND INFINITE VARIANCE TIME SERIES

GEN RYU

1. Summary

The study includes both distributions with finite variance and infinite variance innova-
tions. The model is also assumed not only with long-range dependence, the short depen-
dence is also used in the paper.

When generating series with infinite variance, we will use independent symmetric α-
stable variables as innovations in FARIMA(p, d, q) series, and skewed stable and Pareto
distributions as the innovations in a FARIMA(0, d, 0) series. The parameter d is restricted
to interval [ 0, 1− 1/α).

note. The relation between the index of the similarity and ”d” in FARIMA is shown as

H = d+ 1/α.

note2. The parameter d plays the role of a differencing parameter in the FARIMA model.

note3. The X(m) defined below has the relation with S,

X(m) ∼d mH−1S,

where S is a process which depends on the distribution of X but does not depend on m.

2. Methods

2.1. Whittle Method. The Whittle estimator gave the best performance for the series
used in the study. If the parametric form of a time series is known, then the Whittle
estimator is to be recommended. Even if the exact form is not known, but the maximum
order (p, q) is known, this estimator can give good results.

Q(η) =

∫ π

−π

I(η)

f(ν; η)
dν +

∫ π

−π
log f(ν; η)dν.

note. It is d and not H which is estimated even in the infinite variance case.

note2. If the model is under specified, the Whittle estimator becomes more biased than
any of the others used here.

Date: May 28, 2012.

1



2 GEN RYU

2.2. Local Whittle Method. The second recommended method is Local Whittle esti-
mator, which is proposed by Robinson(1995).

One estimates d by minimizing

R(d) = log

⎛

⎝ 1

M

M∑

j=1

I(νj)

ν−2d
j

⎞

⎠− 2d
1

M

M∑

j=1

log νj .

note. There are as yet no corresponding theoretical results.

2.3. Periodogram Method. The periodogram is defined as

I(ν) =
1

2πN

∣∣∣∣∣∣

N∑

j=1

X(j)eijν

∣∣∣∣∣∣

2

,

where ν is the frequency, N is the length of the series, and X is the time series. I(ν) is
an estimator of the spectral density of X, and a series with long-range dependence will
have a spectral density proportional to |ν|−2d close to the origin. A log-log regression thus
provides an estimate of d. In the infinite variance case the problem is significantly more
complicated.

note. There are no theoretical results for the periodogram regression method. The pro-
portionality to |ν|−2d as ν → 0, however, seems to hold empirically in the infinite variance
case as well.

2.4. The estimator for H in robust order.

2.4.1. Variance of Residuals Method(VR). The Variance of Residuals method was intro-
duced by Peng et al.(1994). First the series is divided into blocks of size m. Then, within
each block, the partial sums of the series are calculated,

Y (t) =
t∑

i=1

Xi.

A least-squares line, a+ bt, is fitted to the partial sums within each block, and the sample
variance of the residuals is computed,

1

m

m∑

t=1

(Y (t)− a− bt)2.

As the calculation in the paper, the slope of the log-log plot shows 2H. In practice, this is
not recommended because the scatter is too large for the infinite variance series.
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2.4.2. Absolute Value Method. Let X(m)(k) be

X(m)(k) =
1

m

km∑

i=(k−1)m+1

Xi, k = 1, 2, . . . , [N/m ].

Then we take the first absolute moment of this series,

AM (m) =
1

N/m

N/m∑

k=1

|X(m)(k)− X̄|,

where X̄ is the overall series mean. The same thing can be concluded like above, that is,
the slope of log-log lime is the function of H, H − 1.

note. The method loses efficiency, especially for values for α close to 1.

3. Interesting facts

3.1. About S in the first section. In the finite variance case S is Fractional Gaussian
Noise (FGN) and in the infinite variance case it is Linear Fractional Stable Noise (LFSN).

The FGN series {Xi, i ≥ 1} is a zero mean, stationary, Gaussian time series whose
autocovariance function at lag h is:

γ(h) =
1

2
{(h+ 1)2d+1 − 2h2d+1 + |h− 1|2d+1}, h ≥ 0,−1/2 < d < 1/2.

For d ̸= 0, the autocovariance satisfies

γ(h) ∼ d(2d+ 1)h2d−1 as h → ∞.

In addition, the spectral density is given by:

f(ν) = Cd(2 sin
ν

2
)2

∞∑

k=−∞

1

|ν + 2πk|2d+2
∼ Cd|ν|−2d as ν → 0.

3.2. About stable distribution. If either Pareto or stable with parameter α, then P (ϵ >
x) ∼ Cx−α as x → ∞, that is, the probability tails decrease slowly, like a power function.
Moreover, Var(ϵ) = ∞ if α < 2, and E|ϵ| = ∞ if 0 < α ≤ 1.

3.3. About long dependence. The FARIMA(p, d, q) family of models is widely used in
the modeling of time series with long-range dependence. These are moving averages

Xn =
n∑

i=−∞
cn−iϵi,

where ck behaves like kd−1 for large k and the ϵi’s are independent, identically distributed
random variables.



SUMMARY-TIME SERIES(APPLICATIONS TO FINANCE)

GEN RYU

1. ARIMA and SARIMA

1.1. ARIMA models (autoregressive integrated moving average model). ARIMA
model is a generalization of ARMA model. For ARMA(p,q) model Wt, the ARIMA(p,d,q)
model Yt is defined as

(1−B)dYt = Wt.

If we write ARMA(p,q) in an explicit way,

φ(B)Wt = θ(B)Zt,

then the ARIMA(p,d,q) can be shown as

φ(B)(1−B)dYt = θ(B)Zt.

note. The definition varies from books to books. So you must be careful to put the
definition in mind.

Examples:

(1) Yt = α+ βt+Nt can be written as ARIMA(0,1,1).
(2) ARIMA(0,1,0) is a Random Walk model.
(3) (conti of (2)) the price of a stock at the end of day t can be written as ARIMA(0,1,0).

1.2. Another definition for ARIMA model.

Definition 1.1 (The ARIMA(p,d,q) Process). If d is a non-negative integer, then {Xt} is
said to be an ARIMA(p,d,q) process if Yt := (1−B)dXt is a causal ARMA(p,q) process.

note. This definition is from ”Time seris: Theory and Methods”.

1.3. the extension of the ARIMA model-SARIMA model.

Definition 1.2 (The SARIMA(p,d,q) × (P,D,Q)s Process). If d and D are non-negative
integers, then {Xt} is said to be a seasonal ARIMA(p,d,q) × (P,D,Q)s process with period
s if the diffenenced process Yt := (1−B)d(1−Bs)DXt is a causal ARMA process,

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt, {Zt} ∼ WN(0,σ2)

where φ(z) = 1−φ1z− · · ·−φpzp, Φ(z) = 1−Φ1z− · · ·−ΦP zP , θ(z) = 1+θ1z+ · · ·+θqzq,
Θ(z) = 1 +Θ1z − · · ·−ΘQzQ.

Date: January 29, 2012.
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2. invertible and noncausal

2.1. invertible.

Theorem 2.1. An MA(q) model {Yt} is invertible if the roots of the equation θ(B) = 0
all lie outside the unit circle.

2.2. causal.

Definition 2.2. A process {Yt} is said to be causal if there exists a sequence of constants
{ψj}’s such that Yt =

∑∞
j=0 ψjZt−j with

∑∞
j=0 |ψ| < ∞.

Theorem 2.3. An AR(p) process is causal if the roots of the characteristic polynomial
φ(z) = 1− φz − · · ·− φpzp all lie outside the unit circle.

3. ACF and PACF

3.1. ACF.

Definition 3.1. Let {Xt} be a stationary process. Then

(1) γ(τ) = Cov(Xt, Xt+τ ) is called the autocovariance function.
(2) ρ(τ) = γ(τ)/γ(0) is called the autocorrelation function.

3.2. PACF.

Definition 3.2. The PACF of a stationary time series is defined as

φ11 = ρ(1),(3.1)

φkk = corr(Yk+1 − Ps̄p{Y2,··· ,Yk}Yk+1, Y1 − Ps̄p{Y2,··· ,Yk}Y1)(3.2)

where Ps̄p{Y2,··· ,Yk}Y denotes the projection of the random variable Y onto the closed linear
subspace spanned by the random variables {Y2, . . . , Yk}.

Examples:

(1) φ11 = corr(Yk+1 − Ps̄p{Y2,··· ,Yk}Yk+1, Y1 − Ps̄p{Y2,··· ,Yk}Y1)
(2) ARIMA(0,1,0) is a Random Walk model.
(3) (conti of (2)) the price of a stock at the end of day t can be written as ARIMA(0,1,0).



SUMMARY–DISCRIMINANT ANALYSIS FOR DYNAMICS OF STABLE
PROCESSES

GEN RYU

1. Definition

On the linear process

(1.1) Xt =
∞∑

j=−∞
ψjZt−j , t ∈ Z,

where the innovation {Zt}t∈Z is a seq of iid symmetric α-stable r.v. for α ∈ (0, 2), many
key words are defined as follows.

1.1. characteristic exponent. α is called characteristic exponent.

1.2. the power transfer function of the linear filter. The power transfer function of
the linear filter is defined as

|ψ(λ)|2 = |
∞∑

j=−∞
ψje

−ijλ|2, λ ∈ [−π,π].

1.3. the normalized power transfer function of {Xt}. The normalized power transfer
function of {Xt} is written as

f̃(λ) ≡ |ψ(λ)|2

ψ2
=

|
∑∞

j=−∞ ψje−ijλ|2
∑∞

j=−∞ ψ2
j

=
∞∑

k=−∞
ρ(k)e−ikλ, λ ∈ [−π,π],

where

ρ(k) =

∑∞
j=−∞ ψjψj+k∑∞

j=−∞ ψ2
j

, k ∈ Z.

Date: February 19, 2012.
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note. Since

|
∞∑

j=−∞
ψje

−ijλ|2 = (
∞∑

j=−∞
ψje

ijλ)(
∞∑

l=−∞
ψle

−ilλ)

=
∞∑

j=−∞

∞∑

l=−∞
ψjψle

−ijλe−ilλ

=
∞∑

j=−∞

∞∑

l=−∞
ψjψle

−i(l−j)λ

=
∞∑

j=−∞

∞∑

k=−∞
ψjψj+ke

−ikλ, where k = l − j.

1.4. smoothed self-normalized periodogram. It is called the smoothed self-normalized
periodogram if it takes the form

∑

|k|≤m

WnĨn,X(λk).

2. the main point of this paper

2.1. consistency. The misclassification probabilities converge to 0 as the sample size tends
to infinity.

2.2. the goodness of fit. The evaluation of In(f̃ , g̃) is done in terms of misclassification
probabilities when one density is contiguous to another.

3. assumptions and theorems

The hypotheses is defined as

π1 : f̃(λ) π2 : g̃(λ),

and the classification statistic is defined as

In(f̃ , g̃) =

∫ π

−π

{
log

(
g̃(λ)

f̃(λ)

)
+

(
1

g̃(λ)
− 1

f̃(λ)

)
Ĩn,X(λ)}dλ

}
.

3.1. consistency.

Assumption 3.1. The linear filter {ψj}j∈Z satisfies

∞∑

j=−∞
|j||ψj |δ < ∞

for some δ < min(1,α).
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note1. Under this assumption, we also have

∞∑

k=−∞
|k||ρ(k)|δ < ∞.

note2. This assumption also implies the normalized power transfer function can be defined
as (1.3) by using Hölder’s inequality.

Assumption 3.2. f̃(λ) and g̃(λ) are positive on [π,π], and f̃(λ) ̸≡ g̃(λ) on a set of positive
Lebesgue measure.

Theorem 3.3. Let {Xt}t∈Z be defined by (1.1) and suppose that Asp1-2 hold. Then, for
the hypothesis, the misclassification probabilities tend to 0 as n → ∞. That is,

P (2|1) ≡ P (In(f̃ , g̃) ≤ 0|π1) → 0, P (1|2) ≡ P (In(f̃ , g̃) > 0|π2) → 0.

3.2. the goodness of fit. Now we consider the goodness of fit in the case that g̃(λ) is
contiguous to f̃(λ). That is

π1 : f̃(λ|θ) π2 : g̃(λ) = f̃(λ|θ + anh),

where

an =

(
log n

n

)1/α

.

Assumption 3.4. f̃(λ|θ) is continuously three times differentiable with respect to θ ∈ Θ,
and

q∑

j,k,l=1

| ∂3

∂θj∂k∂l
f̃(λ|θ)| < ∞.

Assumption 3.5. For some δ < min(1,α), and for k, l = 1, . . . , q.

∞∑

t=1

|
∫ π

−π

∂

∂θk
f̃(λ|θ) f̃−1(λ|θ) cos(tλ) dλ|δ < ∞,

∞∑

t=1

|
∫ π

−π

∂2

∂θk∂θl
f̃(λ|θ) f̃−1(λ|θ) cos(tλ) dλ|δ < ∞,

Theorem 3.6. Let {Xt}t∈Z be defined by (1.1) and suppose that Asp1-4 hold. Then under
the contiguous condition,

lim
n→∞

P (2|1) = P (
Z1

Y0
≥ hTF(θ)h

4(Cα
∑∞

t=1 |Et(θ)Th|α)
1
α

),
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where

F(θ) =

[∫ π

−π

∂

∂θk
f̃(λ|θ) ∂

∂θl
f̃(λ|θ)f̃−2(λ|θ) dλ

]

k,l

(q × q)−matrix;

Et(θ) =

[∫ π

−π

∂

∂θk
f̃(λ|θ) f̃−1(λ|θ)(cos(tλ)− ρ(t)) dλ

]

k,1

(q × 1)− vector;

Cα =

⎧
⎨

⎩

(1− α)σ

2Γ(2− α) cosπα/2
, if α ̸= 1,

σ/π, if α = 1.

and Y0 is an α
2 -stable positive r.v. which is independent of {Zt}t∈Z.

3.3. the estimation of f̃(λ). We can estimate the npt function by the smoothed self-
normalized periodogram ∑

|k|≤m

Wn(k)Ĩn,X(λk)

where

λk = λ+
k

n
, |k| ≤ m,

m = mn is a seq in N such that

mn → ∞ and
mn

n
→ 0, n → ∞.

{Wn}n∈N is a seq of weight functions satisfying the conditions:
∑

|k|≤m

Wn(k) = 1;

∑

|k|≤m

Wn(k)
2 = o(1), n → ∞;

Wn(k) = Wn(−k) , Wn(k) ≥ 0.



SUMMARY=LOCAL ASYMPTOTIC NORMALITY FOR REGRESSION
MODELS WITH LONG-MEMORY DISTURBANCE

GEN RYU

1. the main point of the paper

1.1. The local asymptotic normality property. In the paper, the local asymptotic
normality property is established for a regression model with fractional ARIMA(p,d,q)
errors.

1.2. applications for inference problems in the long-memory context.

(1) testing linear constraints on the parameters;
(2) the discriminant analysis problem;
(3) the construction of locally asymptotically minimax adaptive estimators.

1.3. other applications in the long-memory context.

(1) hypothesis testing;
(2) discriminant analysis;
(3) rank-based testing;
(4) locally asymptotically minimax;
(5) adaptive estimation.

2. question

(1) What is Durbin-Watson test?

Date: January 31, 2012.
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SUMMARY=LIMIT THEORY FOR THE SAMPLE COVARIANCE AND
CORRELATION FUNCTIONS OF MOVING AVERAGES

GEN RYU

1. definition

We consider the discrete time moving average process

(1.1) Xt =
∞∑

j=−∞
cjZt−j , t ∈ Z,

with
∞∑

j=−∞
|cj | < ∞.

in this summary.

1.1. regularly varying tail probabilities. {Zt,−∞ < t < ∞} is an independent and
identically distributed(iid) sequence of random variables with regularly varying tail prob-
abilities, that is,

P (|Zk| > x) = x−αL(x)

with α > 0 and L(x) a slowly varying function at ∞ and,

P (Zk > x)

P (|Zk| > x)
→ p and

P (Zk < −x)

P (|Zk| > x)
→ q

as x → ∞, 0 ≤ p ≤ 1 and q = 1− p.

1.2. the sample correlation function.

ρ̂(h) =

∑n−h
t=1 XtXt+h∑n

t=1X
2
t

, h > 0.

1.3. the correlation function.

ρ(h) =

∑∞
j=−∞ cjcj+h∑∞

j=−∞ c2j
.

1.4. the sample covariance function.

ˆγ(h) =
1

n

n∑

t=1

XtXt+h, h > 0.

Date: January 31, 2012.
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2. the main points of this paper

2.1. the limit distribution of the sample covariance function. The limit distribution
is derived in the case that the process has a finite variance but an infinite fourth moment.

2.2. convergence(0 < α < 2). The sample correlation function converges in distribution
to the ratio of two independent stable random variables with indices α and α/2, respectively.

2.3. the limit distribution for the least squares estimates. The limit distribution
for the least squares estimates of the parameters in an AR model.

3. Propositions

Proposition 3.1. If 2 ≤ α < 4 and EZt = 0, then for every positive integer h,

a−2
n (nγ̂(h)−

n∑

t=1

∞∑

i=−∞
cici+hZ

2
t−i) →p 0,

where
an = inf{x;P (|Z1| > x) ≤ n−1}.



SUMMARY-MARTINGALE CENTRAL LIMIT THEOREMS

GEN RYU

1. notations

Let {Sn,Fn, n = 1, 2, . . . } be a martingale on the probability space {Ω,F , P},
with

S0 = 0,

Xn = Sn − Sn−1, n = 1, 2, . . . .

note. F0 need not be the trivial σ-field {∅,Ω}.

φj(t) = E(eitXj |Fj−1) = Ej−1(e
itXj ),(1.1)

σ2
n = En−1(X

2
n),(1.2)

V 2
n =

n∑

j=1

σ2
j ;(1.3)

s2n = EV 2
n = ES2

n,(1.4)

bn = s−2
n max

j≤n
σ2
j .(1.5)

2. definition

2.1. the Lindeberg condition. the Lindeberg condition is said to hold if the martingale
satisfies

V 2
n s

−2
n →p 1

and

s−2
n

n∑

j=1

EX2
j I(|Xj | ≥ ϵsn) →p 0 as n → ∞.

for all ϵ > 0.

Date: January 28, 2012.
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3. assumptions

Assumption 3.1.
V 2
n s

−2
n →p 1

For this class of martingales, the Lindeberg condition is said to hold if

Assumption 3.2.

s−2
n

n∑

j=1

EX2
j I(|Xj | ≥ ϵsn) →p 0 as n → ∞.

for all ϵ > 0.



ROBUSTNESS

YAN LIU

1. Reference

Künsch (1984), AS.

2. notations

2.1. Notations.

1. h(x) a known probability density on R
2. σ2 variance of Ui

3. ρ(x, n)m m-dimensional marginal distribution of stationary processes
4. Mm the set of ρ(x, n)m

5. θ ∈ Θ ⊂ Rq (q ≤ p+ 2) unknown parameter
6. T a functional Mm → Θ (or restrict T to a certain subset of Mm)
7. γ∗ = supx|ICT (x, θ)| gross error sensitivity
8. θ = (θ1, θ2)
9. θ1 = σ and θ2 = (η,β1, . . . ,βp)
10. κ = (κ1,κ2)
11. ψ = (ψ1,ψ2)

2.2. Fundamental Setting.

(i) AR(p) process

(Xi − η) =
p∑

k=1

βk(Xi−k − η) + Ui, i.i.d. Ui

Using x∗i = xi − η, κ is defined by

κ(x1, . . . , xp+1; θ) =
∂

∂θ
log

1

σ
h

(
x∗p+1 −

∑
βkx∗p+1−k

σ

)

Furthermore, let u denote

u = x∗p+1 −
∑

βkx
∗
p+1−k

(ii) m-dimensional marginal distributions

Date: September 1, 2014.
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(a) Define xi = xi−kn if i > kn for k ∈ N;
(b) m-dimensional marginal distributions

ρ(x, n)m = n−1
n∑

i=1

δ(xi, . . . , xi+m−1),

where δ(xi, . . . , xi+m−1) is the point mass at x ∈ Rm.
(iii) M-estimator defined by

n−m+1∑

j=1

ψ(xj , · · · , xj+m−1; θ̂n) = 0.

(iv) Choice of the functional T : for T (µm
θ ) = θ,

θ̂n(x1, . . . , xn) = T (ρ(x, n)m).

(v) Any version of the influence function ICT (x, θ)∫
ICT (x, θ)µθ(dxm|xm−1, · · · , xm−p) = 0.

(vi) Asymptotical variance-covariance matrix

C(T, θ) =

∫
ICT (x, θ)ICT (x, θ)

Tµm
θ (dx).

Lemma 2.1. If {Xi}i∈Z is stationary ergodic process, then

ρ(x, n)m → µm as n → ∞.

2.3. Hampel’s optimality problem. Minimize the trace of the asymptotic covariance
matrix C(T, θ) among all estimators of (iv) which have an influence function and for which

γ∗ = sup
x
|ICT (x, θ)| ≤ c(θ).

2.4. Huber function.
Hc(x) = xmin(1,

c

|x|)

3. Fundamental Theorems

Theorem 3.1 (Künsch (1984), Theorem 1.1). A functional L : Mm → R is of the form
L(νm) =

∫
t(x)νm(dx) with t bounded and continuous iff L is affine and weakly continuous.

Theorem 3.2 (Künsch (1984), Theorem 1.2).
∫
t(x)νm(dx) = 0 for all νm ∈ Mm iff

t(x1, . . . , xm) = g(x1, . . . , xm−1)− g(x2, · · · , xm) with an arbitrary g.

Theorem 3.3 (Künsch (1984), Theorem 1.3). Let µ denote the distribution of an AR(p)-
process. If Rm → R, m > p, is continuous, sup|f(x)|/(1+ |x|) < ∞ and

∫
f(x)µm(dx) = 0,

then there exists a continuous function g : Rm−1 → R with sup|g(x)|/(1 + |x|) < ∞ and
∫

f(x1, . . . , xm) + g(x1, . . . , xm−1)− g(x2, · · · , xm)µ(dxm|xm−1, · · · , xm−p) = 0
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for all x1, . . . , xm−1. g is unique up to an additive constant.

4. optimal robust estimators

Theorem 4.1. Suppose σ is known and h(x) = h(−x). If the bound c(θ) is such that
∫

Hc(θ)(A(θ)κ(x, θ))κ(x, θ)
Tµp+1

θ (dx) = Id

has a solution A(θ) for all θ, then the solution of Hampel’s optimal problem is given by
{
m = p+ 1,

ψ(x, θ) = Hc(θ)(A(θ)κ(x, θ)).

Theorem 4.2. If ψ1(x1, . . . , xp+1; θ) = χ
(
u
σ

)
with χ(·) even and ψ2 is one of the opti-

mal solutions of Hampel’s problem, then σ̂ is asymptotically independent of θ̂2 and the
asymptotic covariance for θ̂2 is the same as for known σ.

5. words

1. commence 始める
2. dwell いる
3. minutiae ささいな事柄
4. predator-prey 捕食者-犠牲者
5. sonar ソナー

6. Further Reading

6.1. robustness. Robust statistics, Maronna, Martin and Yohai

7. notations

1. {yt, xt, rt}Tt=1 a stationary and weakly depedent process
2. xt ∈ X ⊂ Rdx

3. yt ∈ Y ⊂ R
4. H0 the null hypothesis
5. ν(y, g) a mean zero Gaussian process
6. B {(y, g) ∈ (Y × G);E 1(yt ≤ y)g(xt)(π

+
0 (xt)− 1(rt−1 ≥ 0)) = 0}.

7.1. Hypotheses.

• the null hypothesis H0

F+(y|x) ≥ F−(y|x) a.s. for all (y, x) ∈ Y × X .

Rewrite the notations by π+0 where

π+0 (x) = P (rt−1 ≥ 0|xt = x).
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Then the null hypothesis H0 is

E
[
1(yt ≤ y)

(1(rt−1 < 0)

π−0 (xt)
− 1(rt−1 ≥ 0)

π+0 (xt)

)∣∣∣xt = x
]
≤ 0

for all (y, x) ∈ Y × X . Moreover using instrument g ∈ G where

G = {ga,b; ga,b(x) =
dx∏

i=1

1(ai < xi ≤ bi) for some a, b ∈ X},

the hypothesis can be simplified more.

7.2. Test statistic.
ST = sup

(y,g)∈Y×G

√
Tm̄T (y, g, π̂

+),

where

m̄T (y, g,π) =
1

T

T∑

t=1

1(yt ≤ y)g(xt){π(xt)− 1(rt−1 ≥ 0)},

and Nadaraya-Watson’s kernel

π̂+(x) =

∑T
t=2 1(rt−1 > 0Kh(x− xt))∑T

t=2Kh(x− xt)
,

where K : Rdx → R.

7.3. Empirical process.

νT (y, g) =
√
T{ξT (y, g)− EξT (y, g)},

where

ξT (y, g) =
1

T

T∑

t=1

{1(yt ≤ y)− F (y|xt)}g(xt){π+0 (xt)− 1(rt−1 ≥ 0)}.

7.4. Covariance of ν(y, g).

C((y1, g1), (y2, g2)) = lim
T→∞

Cov(νT (y1, g1), νT (y2, g2)).

8. Results

Theorem 8.1. Under Assumptions and the null hypothesis H0,

ST ⇒
{
sup(y,g)∈B ν(y, g) if B ̸= ∅
−∞ if B = ∅

.



THEORY OF RANK TESTS

GEN RYU

1. words

(1) treatise 専門書
(2) substantially 実質上
(3) sadly 不幸にも
(4) untimely 時を誤った
(5) flourish 栄える
(6) former colleagues 前の同僚
(7) press ... to人に...をせがむ、懇願する
(8) come to life 生まれる
(9) tribute 捧げもの
(10) substantial かなりの
(11) incorporated 取り入れられる
(12) designated つけられる
(13) painstaking 骨をおる
(14) patience 辛抱
(15) long-lasting 長く続く
(16) inspire 奮い立たせる
(17) be acquainted with 知っている
(18) striving するよう努力する
(19) lucidity 明晰、明快
(20) in this respect この点において
(21) formulae = formula
(22) supplied with 与えられる
(23) complement 補完
(24) omitting を省略する
(25) coverage 範囲、概観
(26) comprise を含む
(27) sector 部門
(28) due 当然与えられるべきな
(29) dual 二重の
(30) genesis 起源
(31) composite 複合的な

Date: February 14, 2012.

(32) prescribe 規定する
(33) stringent きびしい
(34) go far beyond 優に超える
(35) blended 混ぜ合わせられた
(36) harmoniously 調和的に
(37) ally と同類である
(38) amenable 従いやすい
(39) tenable 持続できる
(40) thrust 目標
(41) appraisal 評価
(42) constitute を構成する
(43) pertain 付属する
(44) sequential 順次的な
(45) depict 表現する
(46) intricate 入り組んだ、錯綜した
(47) encompass を含む
(48) sibling きょうだい
(49) duality 二重性
(50) alignment 整列
(51) invincible 無敵の
(52) annex 併合する
(53) intervention 介入
(54) at the cost of sacrificingを犠牲にして
(55) in favor of 賛成して
(56) solid 確固たる
(57) crop up 現れる
(58) intricate 入り組んだ
(59) tie up with つなぐ
(60) stood 立てられた
(61) for a while しばらくの間
(62) breakthrough 前進
(63) appraise 評価する
(64) nuisance 邪魔者
(65) emerge 浮かび上がる
(66) viable 生きていける
(67) focal 焦点の
(68) pertinent 適切な
(69) depiction 描写
(70) flavor 風味
(71) bread and butter 必要最低限な

1
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(72) contrast 対照する
(73) gear 合うように調整する
(74) genuine 本物の
(75) facilitate を容易にする
(76) contemplated 熟慮した
(77) vigorous たくましい
(78) intrude 侵入する
(79) synopsis 概要
(80) auxiliary 補助
(81) incur 招く
(82) realistically 現実的に
(83) universally いつも
(84) attach くっつける
(85) conjecture 推測、憶測
(86) affix 添加物
(87) induce 気にさせる
(88) reserved position 控えめな
(89) abundance 多数
(90) conceivable 想像できる
(91) tendency 傾向
(92) adhere 執着
(93) commit 犯す
(94) reluctant 気の進まない
(95) there is no need to する必要がない
(96) there is no reasonable rule for する

理由がない
(97) irreversible 不可逆の
(98) utilize 役立たせる
(99) clear-cut 明らかな

(100) embrace (考え)を抱く
(101) reverse 逆の
(102) envelope 包絡線
(103) in no way = not at all 決して
(104) definitive 決定的な
(105) quote 持ち出す
(106) discus 円盤
(107) indeterminate 不確定な
(108) advantages and shortcomings 善し悪

し
(109) in ascending order 昇順
(110) on account of = because of の為に
(111) a fortiori 結果的に

(112) the question of how... questionの使
い方

(113) amount to と言っていい
(114) expedient 便利だ
(115)
(116)
(117) validly 妥当に
(118) appealing 魅力的な
(119) prominent 卓越した
(120) tacitly 暗黙の



WAVELET TRANSFORMATION

YAN LIU

1. Introduction

Both the Fourier transformation and the wavelet transformation transform the function
from time domain to frequency domain. The main idea is based on the theory of the basis
for functions. The difference between two methods is that the Fourier transformation is
based on the basis

B = {b(t− nq0)e
imp0t;m,n ∈ Z},

while the wavelet transformation is based on the basis

B = {|p0|−m/2ψ(p−m
0 t− nq0);m,n ∈ Z}.

Here, ψ(·) is called mother wavelet.

2. Theory for basis

2.1. the basis for wavelets.

Definition 2.1 (MRA). The closed subspace {Vj ; j ∈ Z} ⊂ L2(R) is called multiresolution
analysis (MRA) if

(i) Vj ⊂ Vj+1, j ∈ Z,
(ii) ∩j∈ZVj = {0}, (∪j∈ZVj)c = L2(R),
(iii) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1,
(iv) there exists a function ϕ(x) ∈ V0 such that {ϕ(x − k); k ∈ Z} is the orthornormal

basis for V0.

Here, ϕ(·) is called scaling function.

Note that L2(R) can be always represented by

L2(R) = VJ ⊕
∞∑

s=J

⊕Ws.

Define

hk =
√
2

∫

R
ϕ(x)ϕ(2x− k)dx.
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The scaling function ϕ(x) satisfies

ϕ(x) =
√
2
∑

k

hkϕ(2x− k).

Mother wavelet ψ(x) is defined by

ψ(x) =
∑

k

(−1)kh1−kϕ(2x− k).

As a result, any function f(x) ∈ L2(R) has a representation

f(x) =
∞∑

j=−∞

∞∑

k=−∞
bj,kψj,k(x)

=
∞∑

k=−∞
αJ,kϕJ,k(x) +

∞∑

j=J

∞∑

k=−∞
βj,kψj,k(x).

Obviously,

bj,k = ⟨ f,ψj,k ⟩, j, k ∈ Z,
αJ,k = ⟨ f,ϕJ,k ⟩, k ∈ Z,
βj,k = ⟨ f,ψj,k ⟩, j ≥ J, k ∈ Z.

2.2. norm. Define τhf(x) = f(x− h). The Besov space Bs
p,q is defined as follows:

for f ∈ Lp(R), 1 ≤ p ≤ ∞,

(1) for s ∈ (0, 1),

γs,p,q(f) =
{∫

R

(∥τhf − f∥Lp

|h|s
)q dh

|h|

}1/q
,

γs,p,∞(f) = sup
h∈R

∥τhf − f∥Lp

|h|s ,

(2) for s = 1,

γ1,p,q(f) =
{∫

R

(∥τhf + τ−hf − 2f∥Lp

|h|

)q dh

|h|

}1/q
,

γ1,p,∞(f) = sup
h∈R

∥τhf + τ−hf − 2f∥Lp

|h|s ,

then we say

f ∈ Bs
p,q ⇐⇒ γs,p,q(f) < ∞, f ∈ Lp(R).

The Besov norm for f(x) ∈ L2(R) ∩Bs
2,q is well defined and

∥f∥s2,q =
(∑

k

|α0,k|2
)1/2

+
[∑

l≥0

(
2ls

(∑

k

|βl,k|2
)1/2)q]1/q
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3. Further reading

Kato and Masry (1999) for wavelet transform of fractional Brownian motion, Donoho
and Johnstone (1994, 1995) and Donoho et al. (1995, 1997) for wavelet for statistics. Also
see Japanese work like Kawasaki and Shibata (1995) and Shibata and Takagiwa (1997).

4. Idea

The main purpose is to transmit functions using some finite device. Suppose f(x) ∈ L2.
It is known that f can be represented by the basis in L2.

f =
∑

n

anfn.

Precisely, the wavelet is defined as follows.

Definition 4.1. A wavelet is a function Ψ(t) ∈ L2(R) such that the family of functions

Ψj,k = 2j/2Ψ(2jt− k)

where j and k are arbitrary integers, is an orthonormal basis in the Hillbert space L2(R).

5. words

1. archetypal 原型の、典型的な
2. recipient 受取人
3. acoustics 音響学
4. seismology 地震学
5. depict 表現する
6. for the time being 差し当たって
7. spring to mind 頭に浮かぶ
8. intrinsic 固有の


