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1. Model Class in Time Series Analysis

1. Let Dy be

o0

Di={f;f(\)= ) a(r)exp(=ir)), a(r) = a(=r), Y |rlla(r)| < oc}.

2. Let Darma be

o [y a6

Darma ={f; f(N) = 2 |57 b2 o > 0,p, g integers
.
q

q
Z a2’ and Z a;2’ are both bounded away from zero for |z| < 1}.

=0 =0

2. Formulae
Lemma 2.1 (Taniguchi (1983)). Suppose fi(A),..., fs(A) € D1 and g1(A),...,9s(A) € Darnma.
Suppose the Toeplitz matrices are defined by

T = { [ e,

—T

(At = {/7; e“’”—mgj(A)dA}.

Then
1 _ _ _ J - _ _
ﬁtr(F1A1 oAt T AT = 5 /W]Hl{fj()\)gj(A) NdA 4+ 0(n™h).
Lemma 2.2 (TK or TA (1979)).
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/ 2
Ton == 5= | _Oubal)0ful)00fo() folw) >
%/ (5 fo(w) 001 fo(w)) fo(w) ~?dw.

1

Kijr = o

[ (0:.fo/(@)0; fo ()i fo (0)) fo () P loo.

3. some lemmas

Lemma 3.1 (Petrov’s lemma). Consider X is a d-dimensional random vector with distribution
function F. Suppose there are a constant ¢ € (0,1] and another constant ¢; € (0,00) such that,

|EeX|<1—c¢ (3.1)
for all u € R? satisfying ||u| > c1. Then for any u € R? and ||ul| < ¢1,

B Y| < exp(— 5 [ull®). (3.2)
8ci
Proof. Denote g(u) = |Ee*X|2. Then

o) = [ [ costu- (o= 9) () (). (33
since F(dx)F(dy) is an even function. Note 1 — cos?(x) < 2(1 — cos(z)), we have
1—g(2mz) <4™(1 —g(z)) for all z € RY (3.4)

The remainder of proof is left for readers. O

Assumption 3.2 (Cramér’s condition).

limsup|E ™ 71| < 1. (3.5)
|u|—o0
Denote
pp—2(zX) = d¥, 5(X)/dz (3.6)
w(fin ) = [ sup £+ 2) - Sl (). (3.7)
R4 z:|z|<r

Theorem 3.3. Suppose Ly > 0, and a symmetric matriz ¥g satisfies 3o > X. Under assumption
(??), for some constants C and 6 > 0, we have

B (S / Fppon(z8n) dz] < Coo(fin"0, Na(0, £0)) + o(n#=2/2%). (3.8)

Proof. See Yoshida(2006). O



4. Information Geometry

Define
gij = (0i,05) = Ep[ 0;10;1].

Then the class of probability function constitute a Rieman manifold.

We have a-connection defined as follows:

o l1—«
) = B, [ (aiajz + Qaizajz) a,cz}



ANDERSON(1971)-SOME THEOREMS

GEN RYU

Part 1. For Kreiss(1987)
[Lemma 5.5.2 ~Theorem 5.5.7]

1. THE MODEL

(1.1) Yr + By = uy.
or
(1.2) Yt + Bryi—1 + -+ BpYi—p = us.

Under the assumption (A.1) below, we can write the process as

o0

y=Y (-B)*ws, t=..,-1,0,1,....
s=0

Let F' be the sample variance, then it can be written in the form like

o0

F = Eyy, =) (-B)°’S(-B)".
s=0

Also define F as

where

Date: May 15, 2012.



2 GEN RYU

2. ASSUMPTIONS

2.1. Set 1.

(A.1) {y:} is a sequence of random vectors satisfying (1.1) with {u;} independently and
identically distributed with Fu; = 0 and Euu, = X.

(A.2) —B has all characteristic roots less than 1 in absolute value.

(A.3) F is positive definite.

2.2. Set 2.

(A.1)" {y} is a sequence of random vectors satisfying (1.2) with {u;} independently and
identically distributed with Fu; = 0 and Eu? = o2.
(A.2)" The roots of the associated polynomial equation are less than 1 in absolutely value.

3. THEOREMS

Theorem 3.1. Under the set 1 of assumptions, \/T(B’ — B’) has a limiting normal dis-
tribution with mean 0 and covariance matrizc F~1 @ 2.

Theorem 3.2. Under the set 2 of assumptions, \/T(B — B) has a limiting normal distri-
bution with mean 0 and covariance matriz o2 F 1.

Instead of (A.1) or (A.1)’, we have the result if we have the assumption
(A.1)” Elug |***<m, i=1,2,...,p,t =1,2,..., for some ¢ > 0 and some m.
4. AUXILIARY RESULTS

4.1. Equation. It is true that
F =Y+ BFB,

which shows that if X is positive definite, then F' is also positive definite.
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1. X

1.1. &

RO RAL ~ b
1. o EID 5 ;
2. IEHICH B, a—> %2 T 5 ;
3. b LFFENDH 5L

%A BH K

=~ Eﬂﬁk%*&) %o
1.2. Example

Calculation

S|
/ erldm: ? (1.1)
0

As what we are taught in the calculus course, you can easily answer this question. The answer is

1
1 1
/0 po dx = [log(z + 1) ], = log 2.

the complex plane, and we choose the integral path as follows.
LTS

nal / H\\
o3/ \
/

01

(1.2)
What we will do here is to apply the residual theorem to it! Let us consider the integral is on

ey
06



Then,
| i 1/2ie" T et
de = — [ — 120 _gg— [ C g4 1.
/0 s+l /0 1+1/2+1/26° /0 55100 ¥ (13)
1
1 1
- oy =1 ~ log 2. 1.4
| i = loa(3 +)1%, = log (14)

2. Integration with Residue Theorem

Formula 1.1

/2” o or 2.1)
o a-+bcost /a2 —pZ '

To derive the formula, you only have to think about the singularity in it.

2.1. Time Series Model

We will give some examples of integration of spectrums to look at how powerful residue theorem is
in time series.

2.1.1. MA(1)
/ﬂ (14 0e™)(1 4+ ey dr = / (1—02)(1—0/2) & (2.2)
—n |2[=1 =
= 2mi-Res(fuaq), 0) = 2m(1 + 6°). (2.4)

Formula 2.1

g2 [T

o (14 0e™)(1 + =) dX\ = o?(1 + 6?) (2.5)
2.2. AR(1)
4 1 1 dz
/_,r A=t D = /|z|—1 A+ 090 50/7) iz (26)
1 dz
- /|Z|_1 (1+02)(z+0) i 27)
21

= 2mi- Res(far), —0) = 75



Formula 2.2

0.2 ™ 1 0_2
2 /_7r (1 — feir)(1 — fe—N) dr = 162 (2.9)

2.3. ARMA(1,1)
T (140 (1 4 e~ ) - (1—-02)(1—0/z) dz
/ﬂ T—dem)(1—ge) P = /|Z|—1 (L+62)(1 + 6/z) iz (2.10)

_ (1-62)(>—0) dz
- /II 1(1+02)(z+9)z i (2.11)

2mi(Res(farma(), —¢) + Res(farmac),0))  (2.12)

B 1+ 20¢ + 62
= 27 1_7(/52 (2.13)
Formula 2.3
2 T (1 A 1 —iA 1 9 2
i/ (1 + 0e™)( +967_ ) iy = g2 Lt 200+ 6" (2.14)
o ) (U= 66 (1 = ge) - g2
2.4. AR(2)
/Tr 1 d\ (2.15)
(1= 01 — 02620 (1 — Ore— > — foe—i2V) :
z dz
- = 2.16
/z_l (1+912—9222)(22+912—92) ) ( )
Note that the roots 24 of 2% + 612 — 65 = 0 lies in the unit circle, and 23 = —60; 24 + 6o, then
T4+ 012- —022% = (1 —02) 4+ (1+602)012_ = (1+62)(1 — g+ 612_). (2.17)
Note again that z; +z_ = —6; and z4z_ = —0o,
(equation above) = 2m(Res(far(2),2+) + Res(farce),2-)) (2.18)
ST S —
1-— 02 1-— 02 + 912+)(Z+ — Z_) (1 — 92)(1 — 92 + 912_)(2’_ — Z+>
9 1—06,
= 27
(1+62)[(1—02)% —67]
Formula 2.4
o [T 1 (1—6s)02
— . - . —— d\ = .
21 /_ﬂ. (1 — 9161)‘ — 02612)‘)(1 — 916_”‘ — 026_12>‘) (1 + 92)[ (1 — 02)2 — 9%} (2 19)




3. Estimation for model

A way to estimate the coefficients of models is to use the spectrum. Let us think the AR(1) model

fitted by AR spectrum f(\;0):

0 [T (140e™)(1+ e
—/ (A+0e)A+0e ) ) . (3.1)
00 J_. (1+1/2e)(1+1/2e—%)
The integrand can be looked as an ARMA model, i.e. the result will be
d1—-0-0°
- =0, 3.2
00  3/4 (3:2)
and then the true value is !
4. Some interesting transformation
It is easy to see that
1 . _
5(619 +e7 ) = cos . (4.1)
Formula 2.1
Let 0 = iz, then
1
coshz = 5(672 + €*) = cosiz. (4.2)
Similarly,
sinhz = —isiniz. (4.3)

Game
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1. PRELIMINARIES

1.1. notations.

L. p(z) the density of 71
2. f(z) the density of €
3. Oo(1) = (50(7')7%)T the true value of 6(7)
1.2. Model.
e Model

}/;: - ’Yn}/ifl + €is
where for a real number 7,

T=1=7/n

o
€ = E CijMi—js
J=0

e Innovations

where
0, when k£ =0,
&= {kﬁZ(k) when k > 1,
and [(-) is a slowly varying function and
B>1/a,
within the J; topology,

[ns]

_ J
a; ! Zm L Za(s),
i=1

Date: October 21, 2014.



2 YAN LIU
where for a slowly varying function L(z),

an = inf{z : P(Ino| > z) < 1/n} = n'/*L(n).

1.3. Assumptions.
o |p/(x)] < C1(1+ |z[)~(H) for some 6 > max{0,a — 1} and all z € R

o P (x) —p'(y)| < Colz —y|(1 + |z[)~H for all 2,y € R with |z —y| < 1

2. MAIN RESULTS

Theorem 2.1. Assume assumptions above. If f > 2/, then

L g

1
) — o7 — s)) 7t T S T,S T
Du(i(r) = 0(7) £ s (A (W 1), [ S

where

In particular,

wo S — c o fo $)dW (T, s) fo
VA =) = ) fo 2(s)ds - (fo )2
and
n 1/2 c o2
(;Ytz_1 ZYt 1 ) aT)_’Yn)—”V’(O,m),
where
D, = diag(\/ﬁ, an\/ﬁ):

and

0% = Ep2(e0) +2 ) B (e0)tr (&),
Jj=1

a standard Brownian motion W (r,-) of

S(5) = A(Zals) = V/OS e TdZa (1)),

[e.9]

)\:ZC]‘.

J=0



SUMMARY 3

3. QUANTILE REGRESSION

3.1. Quantile Regression.
°?
MLE by assuming that the v;s are i.i.d. skewed-Laplace distributed with unit scale
e p.d.f.
T(1—17) v
fwi0,1) = D exp{ -2 (r — 1(v < 0))}

e In the case of heteroscedasticity, 7 suppose

ht = Var(vt]ft_l).

€ = vt/ma

Assume

its pdf is

v1—-2 272
gles;T) =1 —2T+2T2€Xp{6t—7—+ T }

T — 1(e > 0)
4. SUMMARY

(1) Bayesian inference setting
(2) Model selection with DIC

(3) Two-regime threshold quantile CAPM-GARCH model

o = {8+ O+ 8O, i g < el7)

’ ¢(()2)(T) + <Z5(12) (T)Tt—l + 5(2) (T)T’m,t, if Tmt—d > C(T)

[+l Mat + XV (ke i g < o)
TP + P (e + AP hy, i g > c(r)

ai—1 =11 — qr(re-1).
(4) Parameter estimation
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1. DIC

1.1. notations.

1. r the set of data
2. 0 the unknown parameters
3. p(r|@) the likelihood of the data r

1.2. DIC.
e DIC (Spiegelhalter et al. (2002))

D(0) = —2log p(r|0).

e Concept
“goodness of fit” + “model complexity”

e Goodness of fit

D = Eypr[D(0)]

Date: October 21, 2014.



2 YAN LIU

e Model complexity
Pp = Ep,[D(0)] — D[Eg(9)]
=D — D(0)

o RIRX=FDEDIIINS I\ h 6, 202 ) A7 THiiT 5, MCMC IE i3
T, by PHEw Aduk

2. CAPM

1. Ry the expected return
2. R, the expected market portfolio return
3. 7y  the risk free rate

2.1. CAPM.

e the sensitivity of the expected excess returns on security to expected market risk
premium

e Description
ER; — 1y = B(ERm —7y4)

e Determination of
5= Cov(R; =y Rt —754)
Var(Rp ¢ — 7f.4)

e (3, should change over time
— a smooth transition regime switching CAPM with heteroscedasticity

3. QUANTILE REGRESSION

3.1. Quantile Regression.

e Koenker and Machado (1999)
MLE by assuming that the vjs are i.i.d. skewed-Laplace distributed with unit scale

e p.d.f
7(1—171)

f(v;6,7) = exp{~5(r — 1(v < 0))}



SUMMARY

e In the case of heteroscedasticity, Chen et al. (2009) suppose
ht = Var(vt]}"t_l).

€t = Ut/\/hj,

Assume

its pdf is

v1—2 272
gles;T) =1 —2T+2T26Xp{6t—7—+ . }

T —1(e > 0)
4. SUMMARY

(1) Bayesian inference setting
(2) Model selection with DIC

(3) Two-regime threshold quantile CAPM-GARCH model

iy = {00 D+ @Ot + 8O, g < el7)
’ ¢E)2)(7') + ¢§2) (T)re—1 + 5(2) (T)rmy, if Tm,t—d > c(7)
o [ell )+ ol (Mat, + AV (ke i rga < o)

t O‘(()Q) (1) + 0‘52) (T)a?_y + XD (1) b1, i g > c(7)

where
at—1 =111 — ¢r(re-1).
(4) Parameter estimation
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0.1 Convolution

Define the convolution f *x g as
frglx) = / fwg(x —y)dy. (0.1.1)

Theorem 0.1.1. Suppose f(z) € L (z) and g(x) € LY (x). Then

h(z) := (f * g)(x) € L (x). (0.1.2)

Theorem 0.1.2. Let X and Y be two independent random variables, whose density
function is f and g. Then the density function of X +Y is f xg.

note. The distribution of the sum of two random variables can be written in the form of
convolution if the two random variables are independent. Conversely, if two random vari-
ables are dependent, then joint distribution of two is required to derive the distribution
of sum.

There are many algebraic properties for convolution, which is listed below:

1. commutativity

fxg=gx*; (0.1.3)
2. Associativity
fx(gxh)=(f*g)=xh; (0.1.4)
3. Distributivity
f(g+h)=(fxg)*h; (0.1.5)
4. scalar multiplication
a(f *g) = (af) x g = [ * (ag); (0.1.6)
5. identity element
fxd=1f. (0.1.7)

The calculations around convolution are:
1. integration

[ rea@de= ([ ra)an([ ot o (0.1.5)

2. differentiation
(fxg) =fxg="[*g. (0.1.9)



0.2 Stieltjes Integral

Let f(x) and g(z) be real-valued bounded function defined on a closed interval [a, b].
Take a partition of the interval

a=x9g<x1<--<xp=>0 (0.2.1)

Then the Stieltjes integral is defined as

n—1

> F&)g(miv) — g(w:) (0.2.2)

1=0

with & € [x;, zi1+1]. If the sum exists uniquely as max|z;+; — x;| — 0, then the integral
is denoted as

[ @ dg(a). 0.23)

If f and g have a common point of discontinuity, then the integral does no exist. However,
if f is continuous and ¢’ is Riemann integrable over the specified interval, then

[ t@dgta) = [ @)@ da. (0.2.4)
In fact, if F} and F5 are distribution functions, then the function F' defined by
F(z):= /Fl(a? —y) dF>(y) (0.2.5)

is called the convolution of distribution functions F; and F5. This is also denoted as
F = F1 * FQ.
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1. REFERENCE

Dahlhaus (1996), Stoch. Proc. their Appl.

2. NOTATIONS

2.1. Notations.

1. X;,j>1 a stationary Gaussian sequence

2. i mean

3. o2f(x,0) spectral density

4. ECR? compact

5. Xn = (1/N) X X ~

6. Z =(X1 — Xn,..., XN — Xn)

7. An(60) N x N matrix with entries [Ay(0)];x = a;—r(6) below
8. W(6) the p x p matrix with j, kth entry w;,(0)
9. ¢ — (€06

10. ¢ = (¢o,...,0q)

11. G the derivative of G

3. FUNDAMENTAL SETTING
3.1. Locally Stationary Processes.

Definition 3.1. {X; 7} is called locally stationary
t g .
Xor =)+ [ esp(d) A3 (NN,
3.2. Wigner-Ville spectrum.

1

o Z Cov(Xjur—s/2),1) X[uT+s/2),1) €XP(—1AS).

S§=—00

fr(u,\) =

Date: July 9, 2015.
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The spectrum is defined by
Flu,X) = [A(u, A2

4. MAIN RESULTS

Theorem 4.1. If X; 1 is locally stationary and A(u, \) is uniformly Lipschitz continuous
in both components with index o > 1/2 then we have for all u € (0,1),

" Fr(uA) — fu VPdA = of1).

—T

note. Usually, fr(u,\) does not converge pointwise to f(u, A).

5. WORDS

1. rather the exception than the rule &5 &2 &\ Z IXHISHYT

6. NEW KNOWLEDGE

e The compensation effect in the Whittle estimator appears when the observations
X; are pure Gaussian or linear is rather the exception than the rule!!
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1. REFERENCE

Székely, Rizzo and Bakirov (2007), AS.

2. DEFINITION

2.1. notations.
1. X nxpofX
2.2. Population version of OGA.

e for X € RP and Y € RY, define
akl = [ Xk — Xilp,

k=1
Ay = ag — Q. — a. + a..,

e the empirical distance covariance V,,(X,Y)

1 n
V(X,Y) = o g A1 By
k=1

Date: July 21, 2015.
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e The distance covariance

VA(X,Y) = ||fxy(t,s) — fx(t) fy(s)]> = ! /RPH xy(t5) - fX(t)fY(S)|2dtds.

CpCq ’t’;+p|3|é+q

e the empirical distance correlation R, (X,Y)

R(X,Y) = { VVEOVEY)’ V2(X)V2(Y) >0,
0, VZ(X)VAY)=0.

n

e the empirical characteristic functions

P (t5) = = 3" explift, Xi) + ifs, Yid)
k=1

FR(0) =~ 3 exp{itt, X)),
k=1

f () = = S esp{ils, Vi

k=1
3. MAIN RESULTS
Theorem 3.1. If (X,Y) is a sample from the joint distribution of (X,Y"), then
V(XL Y) = [/ y(ts) = [ s)%

Theorem 3.2. If E|X|, < oo and E|Y |, < 0o, then almost surely
lim V,(X,Y) = V(X,Y).

Theorem 3.3. (i) If E(|X|, + |Y|q) < 00, then
0<R<I1,
and R(X,Y) =0 if and only if X and Y are independent.



DISTANCE CORRELATION 3

Theorem 3.4. Suppose that the random vectors X € RP and Y € RY have the joint
probability density function

Uxy (@,y) = x @)y (4) Y paPu()Qu(y),

neC
where C denote a countable index set with a zero element. Then

1 _
VAXY)=— > > pipeAnBi,
P4 0720 ke hto

whenever the sum converges absolutely.



INTRODUCTION TO FOURIER ANALYSIS
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1. FOURIER SERIES ON THE CIRCLE

Consider
x

flw) = Z(An cos nw + By, sin nw),
n=0
where > > ((|An| 4 |Bn|) < co. The values of f determined on any interval of length 2.
A standard choice is the interval T = (—, 7], where we identify 27-periodic functions on R
with functions on T. The alternative way to representate it is to rewrite it in the complex
form

(1.1) flw)= Y Cnem™.

n=—oo

Theorem 1.1. Suppose that ), ., |Cy| < co. Then f defined by (1.1) is a continuous
function on T. The coefficients are obtained as

1 (7 »
1.2 = —inw g, 7.
(1.2) C o | flw)e "™ dw, ne

If g is any other L' function on T, we have the Fourier reciprocity formula

L fw)g(w)dw = ZCHD,H

2 - nez

where Dy, is the Fourier coefficient of g, defined by (1.2) with f replaced by g. In particular
we have Parseval’s identity

1 ™
[ 1P = Y 0
™ —Tr
nez
Proposition 1.2. Suppose that Y., ., [n*C,| < 0o for some k = 2,3,.... Then f(w) :=

S Cne™ is a k-times defferentiable function with f*)(w) = > nez(in)FCre™ a con-
tinuous function.

Date: June 23, 2012.
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Corollary 1.3. The convolution of an absolutely convergent trigonometric series f with
an arbitrary L' function g has the representation

1 " in
o /_7T f(w)g(A —w)dw = %CnDne .

2. FACTORIAL AND BESSEL FUNCTIONS

Let C,, =0 for n <0 and C,, = r"/n! where r > 0 and n = 1,2,.... Then we have
X n e 0\n
rto. re ,
f@) = Y0 et = 3 IO e
n=0 n=0
and then
r" 1 ("

e exp(re?) exp(—inw)dw, r>0,n=0,1,....

Here we define I(2r) as

0 2
n 1 s
I(2r) = Z <T) exp(2rcosw)dw, r > 0.

T o
n=0 -

3. INTEGRATION

Whether m =n or m #n

(3.1) / cos(mw) sin(nw)dw = 0

When m # n then

(3.2) / cos(mw) cos(nw)dw = 0

(3.3) / sin(mw) sin(nw)dw = 0

(3.4) / sinmwsinnwdw = 0
0

When m = n(# 0) then

(3.5) / cos(mw) cos(nw)dw = =

(3.6) / sin(mw) sin(nw)dw = =

When m = n = 0 then

(3.7) / cos(mw) cos(nw)dw = 2w

(3.8) /_sin(mw)sin(nw)dw =0



Proposition 3.1.
Proposition 3.2.

Theorem 3.3.
Theorem 3.4.
Theorem 3.5.
Definition 3.6.
Definition 3.7.
Corollary 3.8.

INTRODUCTION TO FOURIER ANALYSIS
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1. PRELIMINARIES

1.1. notations.
1. 73 the 3-dimensional integer lattice
2. I,={i:1€ 731 <4, <npk=1,2,3} arectangular region on Z>
3. 1= (il, iz,ig) a site
4. (Y;,X;) € R3, where j € I, a random field indexed by Z3
5. X; = (X1, Xo4) observation
6. g:x— g(x):=E[Y;|X; =] the spatial regression function ¢ : R> — R
7. ¢(x) father wavelets (scaling functions)
8. ¥(x) mother wavelets
9. Ny = N1Nang
10. fx(z) the spatial marginal density function

11. 290 ~Inn,
12. 2t ~ n,lr/2/(lnn7r)7

1.2. Translations and dilations of wavelets and related results. For jy,j,k € Z,
(i) Gjor(x) = 290/2¢(2002 — k)
(i) Uje(@) = 2/2(20z — k)
The bases for g(x1,z2) € L?(R?) are given by

L @k (w1, 72) = Djoky (1) Pjoks (T2)
2. gl)(ﬂ«"l,wz) Djky (1) Vs (22)
3. 22)(331,362) Vijky (21)Djky (22)
4 W3 (@1, 29) = Yy (1)U, (2)

Date: October 16, 2014.
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1.3. 2-variate spatial regression function g(z1,z2). Assume g belong to a subset of
Besov space B, ;. For s >0 and 1 < p,q < oo,

Fy (M) = {9;9 € By, llgllss, < M,s>2/p,suppg C [0, 1]2}

and for k = (k1, ko), k1,ko € # = {0,1,...,270 — 1},

gl m) = Y air@ik(nm) + > Y Zﬁjk ik (21, 22)

ke 2 j>jo ke ? =1

As a result,

Qjoke = / 9(x)Pjok(z)d
[0,1]2

l l
I T

1.4. Wavelet-based estimator. For ¢ satisfying 62> = KyIn ng/n, with Koy > 2Cs,

Jji—1

g(w1, 22) Z Qjok P ok (71, 72 +Z Z Z@Ql |>5) ()($1,ZB2)

kcor? J>jo k€2 1=1

where
. Y;i® k(X
Qjok = Z JO
M 1€ln
vl (x
Jjk
Ny icl, fx(X5)
As a result,
Eajoe = ok
50 _ a0
Eg e = 8 e
Remark 1.1. Cj is a constant from Bernstein’s inequality.

2. MAIN RESULTS
Lemma 2.1 (?, Lemma 2.1).

Theorem 2.2. Let § be the wavelet estimator given as above. Then, for all M € (0,00),
s <r and p,q € [1,00], there exists a constant C, which does not depend on s, p, q and
N, such that

2
s B[ (§@)— g(@)) do < Clung - 2/,
9EF; (M) J[0,1]?



SUMMARY

2.1. Notations in the proof.
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L. js = js(n) 2 o~ n71r/(25+2)
L Y%(Xa) L Yi®0e(Xs)
2. & = fxo(i(i) E fxo(lXi)
g 0 _ YR  Yaw (X
i T T (X fx(X3)

Proof. The proof is constructed by the following 5 steps.

Step 1
Step 2

Step 3

Step 4

Step 5

2

E fio 1 (9(@) = 9(@)) da = Ji(j1) + Jalajor) + J(jos js) + Jaljss j1)-
(Lemma 4.7) J1(j1) = o(ngzs/(%”)).

This is shown by Lemma 4.1 and the definition of Besov space and ji.
(Lemma 4.8) Jy(ajor) = o(ng =/ *72)),

This is shown by Lemma 4.3 and the definition of jj.

(Lemma 4.9) J3(jo,Jjs) < Clnng - ny 2 @512

Note that Js(jo, js) = J3" + J52 + I Also divide J§" into

TV = Jsi1 + Jarz + Jso.

The bound of J317 is shown by the definition of § and j,.
The bound of J312 is shown by Lemma 4.6 and the definition of jg.
The bound of J39 is shown by the definition of j,.

The arguments for both J(Q), Jég) are the same.

(Lemma 4.10) Jy(js. j1) < Clny - n /52,

Note that Jy(js, j1) = J\" + J2 + J¥. Also divide J{" into

Jil) = Ja11 + Ja12 + Ja21 + Ja2o.

The bound of Jy11 is shown by the definition of js for the case of p > 2 and by the
definition of § and js for the case of 1 < p < 2.

The bound of J415 is shown by Lemma 4.6.

The bound of Jy2; is shown by Lemma 4.3 for the case of 1 < p < 2 and by Lemma
4.3 and the definition of §.

The bound of Jy99 is shown by the result of Lemma 4.4, Lemma 4.5.

The arguments for both J(Q), Jf) are the same.

2.2. Complement.

(i) Lemma 4.1 is given in Cai (1999).
(ii) Lemma 4.2 is given in Tran (1990).

(

)
)

(iii) Lemma 4.4 is given in Carbon et al. (1997).

(iv) Lemma 4.5 is given in Hérdle et al. (1998, p.243).
)

v) Lemma 4.3 is shown under Assumption (2.1) and (A1)-(A3).
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(vi) Lemma 4.6 is shown by the method of large blocks and small blocks as Tran (1990) and
Hallin et al. (2004). The result depends on Lemma 4.4 of independent approximation
and Lemma 4.5 of Bernstein’s inequality.
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3. THREE GAUSSIAN MODELS (GWN, NR, GS)

3.1. notations.
L. ¢; an orthonormal basis in L[0, 1]
2.
3. I, ={i:1€ 731 <4, <npk=1,2,3} arectangular region on Z>
4. 1= (i1,12,13) a site
5. (Yj,X;) € R3 where j € I, a random field indexed by Z3
6. X; = (X4, Xo4) observation
7. g:x— g(x) = EY;| X; =] the spatial regression function g : R? — R
8. ¢(x) father wavelets (scaling functions)
9. ¢¥(x) mother wavelets
10. n; = ninong
11. fx(x) the spatial marginal density function

12. 270 ~Inmn,
13. 2t ~ 71,1r/2/(1nn7r)7

3.2. classification.

(1) dY (t) = f(t)dt + edW (t), t €0,1], 0<e<l1,f:[0,1] = R.
(2) yj = 0; + €&, j=1,2,....
(3) Y, = f(i/n) + &, i=1,...,n, where £ ~ i.i.d. N(0,1).

The three models above are respectively,

(1) Gaussian White Noise (GWN)
(2) Gaussian Sequence (GS)
(3) Nonparametric Regression (NR).

3.3. (1) — (2).

1

yj = /OSOj(t)dY(t),
1

0; = ; f);(t)dt,

1
g = /0 o3 (DAY (1),

The other two relationships are also valid under some conditions which mainly need a
good approximation.



SUMMARY 7

3.4. Projection Estimator.
(i) n > 1,
(i) the statistic S is

n
Ful@) = 0j05(x).
j=1
S is called a projection estimator of the regression function f at the point «.
note. In time series analysis,
r = A
0; — 40),
pj(r) — €9
Remark 3.1. The main difference between the trigonometric basis and wavelet bases
consists in the fact that the trigonometric bases “localizes” the function f in the frequency
domain only, while the wavelet bases “localize” it both in the frequency domain and time

domain if we interpret x as a time variable and the index j corresponds to frequency and
k characterizes position in time.
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1. PRELIMINARIES
1.1. notations.

1. ~ a positive constant
f(x) the underlying probability density function
d(x) the contamination probability density function related to outliers
) the contaminated probability density function
a parametric probability density function
r1i,...,T, the observations
0 the estimator of the parameter 0
x an outlier

e R i ol
N
—
8
S—

1.2. preliminaries.

(i) The observations which are draw from
9(x) = (1 —€)f(x) + ed(x).

1.3. assumptions.
1/70

vf = {5(x)f(ﬂs)7°dw}
is sufficiently small for an appropriately large vy > 0.

Remark 1.1. If §(z) is the Dirac function at z*, then the assumption is
vy = f(z¥).

Date: October 18, 2014.
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1.4. cross entropy.

(i) cross entropy

d(9.f) = _10g[{/g(ﬂf)f(f)vdas}1/7/{f(:1:)1+7}1/(1+7)}'

(ii) divergence
D’Y(g’ f) = d’Y(g’ f) - d’Y(gag)'

(iii) the robust estimator

0, = arg mgin d(9, fo)-
(iv) the minimizer between the observation and the parametric model
0, = arg mein d+ (g, fo)-
(v) the minimizer between the true model and the parametric model
0" = argmind, (£, fo).
(vi) Restricted parameter space
Q, ={0;vs, < v}

(vii) Another cross entropy considered by Basu et al.

malg. )= =5 [aftde+ g [ 1,

(viii) the estimator

égm) = arg maxmg(g, fa)-



SUMMARY 3

1.5. idea. Hope for robust parameter estimation that the bias 67 — 6 is sufficiently small.
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2. MAIN RESULTS
Theorem 2.1 (7, Theorem 3.2). Suppose
v = max{vy, v}
Then
D5(g,h) = Dy(g, ) = Dy(f, h) = O(ev7).
Proof. Note that

4 (fh) = do (1= €)fs ) = ilog(l — )+ 0(@)).

Remark 2.2. (i) If 7 is too small, then 7 not small.
Theorem 2.3 (?, Theorem 3.3). Suppose
6 eQy,.
Then
0, = 0"+ O(er?).
Theorem 2.4 (7, Theorem 5.1).
V(6 - 6) = N(0,2,(6))),

where
2g(0) = Jg(0) " 14(0)J4(0) "
Here,
Jg(02) = (1—¢€)Jp(0) +O(er?),
1,(65) = (1-L(6%) + O(e)

Theorem 2.5 (?, Theorem 6.1). Under the cross entropy

dg. 1) = o( [ ox(rds. [ olr)a).

where Y(u,v), x(s) and p(s) are twice differentiable real-valued functions. Further assume:
(i) d(Ng, f) is uniquely minimized at f = g for any X\ > 0, the Hessian is positive-definite.
(1) x(0) =0

(i11) {sx'(s)} >0 ¢

Then there exists a monotone increasing real-valued function ¢ such that
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3. COMMENT IN THE PAPER

We expect the robust estimate to have a small bias when the influence function is
redescending, but this is not always clear in the case of heavy contamination. This paper
clearly shows that the robust estimate éy has a small bias even in the case of heavy
contamination.

We often suppose that € < 1/2. Some results obtained in this paper seem to hold even
for € > 1/2. This is not unreasonable because the underlying density f is always the object
in interest in this paper.

One of the remaining problem is how to set a tuning parameter v. Basu et al. said that
there could be no universal way of selecting an appropriate tuning parameter when we used
the cross entropy. They persisted in given priority to either robustness or efficiency.

= Future Work.
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1. DEFINITIONS

1.1. somewhere parametrically efficiency. A method is called somewhere parametri-
cally efficient if it is efficient in the parametric model induced by some fy. If the method
is not parametrically efficient at some fy, but at any f, then it is called parametrically
efficient.

1.2. somewhere semi-parametric efficiency. Methods that are semi-parametrically
efficient at some fy are called somewhere semi-parametrically efficient, and a method that
is semi-parametrically efficient at any f is simply called semi-parametrically efficient.

1.3. adaptive. The parametrically efficient method is also called adaptive. When the
parametric and semi-parametric lower bounds coincide at some fy, the model is called
somewhere adaptive. If the two bounds coincide for all f, the model is called adaptive.

2. ASSUMPTIONS

Assumption 2.1 (Assumption A). For any bounded sequence (T,,) in R¥, we have

(n)
dPGO +T/\/ﬁv¢0

ap™

Date: May 15, 2012.
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Part 1. Definitions
1. UNIMODALITY

1.1. the definition.

Definition 1.1. If —log f(z) is a convex function within some open interval (a,b) such
that —oo < a < b < oo and f; f(x) =1, the density f(x) is called strongly unimodal.

Such densities are absolutely continuous within (a,b) and

(=)

f(x)
is a non-decreasing function. Another interpretation of unimodality is that a unimodal
probability distribution is a probability distribution which has a single mode. A mode of
a discrete probability distribution is a value at which the probability mass function takes
its maximum value. On the other hand, a mode of a continuous probability distribution is
a value at which the probability density function attains its maximum value.

The unimodality is also defined in the way that the cdf of the distribution is convex for
x < m and concave for z > m.

[—log f(x)] =

1.2. Properties of unimodality.

e A first important result is Gaussian’s inequality; Gaussian’s inequality gives an
upper bound on the probability that a value lies more than any given distance
from its mode.

e Another result is Vysochanskii-Petunin inequality. The inequality is a extension of
Chebychev’s inequality, and it is more accurate than than the latter.

Theorem 1.2. A convolution of two strongly unimodal densities is again a strongly uni-

modal densities.
Lemma 1.3. If f(x) is strongly unimodal, then ¢(u, f)(= —’;((If%llg))))) is non-decreasing.

Corollary 1.4. The density of Stable is unimodal.

Date: May 15, 2012.
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2. GAUSSIAN LOG-LIKELIHOOD AND (GREEN’S FUNCTION P.10

The Green’s function associated with Ag,% is characterized by

P -1
(1 — Z&ﬁ:’) = Zgu(é’)z“ |z| < 1.
i=1 u=0

Using the notation, the asymptotic covariance matrix I'g(g) is the autocovariance matrix
of order p of the stationary AR(p) solution of Ag% under standard normal innovations,

and is denoted by

Fg(g) = (Z gu(e)gu+|ij|(a)> )
u=0

which the term in the parentheses is the (i,j) element.

Part 2. Optimal testing for semi-parametric AR models

Let (X_pt1,...,X0,X1,...,Xy,..., Xy,) be an observed series of length n+p. Through-
out the paper, we assumer that X (n) — (X1,...,X,) satisfies the stochastc difference
equation (AR(p) model)

p
Xi =) 0iXpi=¢, t=0,41,42,. .,
i=1

where {€;},t =0,4+1,£2,... is an i.i.d. sequence with mean zero antdprobability density
f-

It is also assumed that the parameter @ = (61,...,0,)" € RP is such that all the roots of
the characteristic polynomial

P
0(z)=1-— ZOizi, zeC
i=1
lie out side the unit disk.

3. LINEAR HYPOTHESES

The null hypotheses we are interested in are the linear hypotheses, under which 6 belongs
to some linear restriction of © or, equivalently, satisfies some given set of linear constraints.
Such hypotheses are characterized by a p x r matrix 2, of full rank r < p, and by an
element 0y of RP: denoting by M(£2) the r-dimensional linear subspace of RP spanned by
the columns of €2, we consider the hypothesis under which 6 — 8y belongs to © N M(Q),
and thus satisfies a set of p — r linearly independent linear constraints on 8. we tacitly
assume that either 8y = 0, or 6y € R \ M(Q).
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3.1. Explanation. Here, © and M(f2) is p-dimensional subspace of RP. You can see that
M(Q) is a space of linear map, and the easy way to understand is to think

V(0 - 6) €R".

This means that the strain is given by Q and '6y. The virtue of this representation is
that /(6 — 6y) is 77.

3.2. Hypothesis. we denote by H}”)(ao; Q) the linear hypothesis characterized by 6y and
Q. This is a representation depending on the density f in a semi-parametric model. We
will overcome this obstacle by using notation as

H™(00;2) = (V)| f € F;0 — 6 € ©N M(Q)} = | H (860
feF

4. SAMPLE SPLITTING DEVISE

Let the number of the observations Z;(0) be 2n. Split the sample into the two groups
half and half. Then estimate f from the sample in each group and use the estimated f
to compute the central sequence for the other group. The statement can be shown as the
splits respectively,

2n
n*1/2 t;ﬁ stfn) (Zt(O))Wt_l;

’I’L_1/2 ; d)fén) (Zt(H))Wt,l.

5. ASSUMPTIONS AND THEOREMS

5.1. Sets of assumptions.

(A1) f(z) >0, z € R; f_oooo xf(z)dr = 0; ffooo 22 f(z)dr = 0% < o0; ‘

(A2) f is absolutely continuous on finite intervals, i.e., there exists f such that for all
—o0o < a<b<oo, f(b)— f(a) = fabf(ac)d:v;

(A3) letting ¢y = —%, the generalized Fisher information [ d)fe(:):)f(x) de = Iy =
02Ty, is finite.

(A4) the score function ¢; is piecewise Lipschitz, i.e., there exist a finite partition of R
into nonoverlapping intervals Ji, ..., J; and a constant Ay such that

lpr(x) — dr(y)| < Aglz —y| Vae,y € Ji,Vi=1,...,k.
(A5) f is strongly unimodal, i.e., ¢¢ is monotone increasing.
note. All stable densities are unimodal. note2. (A5) = (A2).
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5.2. Interpretation of the assumptions.

(A3) The LAN result holds under these assumptions;

(A4) This assumption induces that the influence of starting values on residual autocor-
relations is to be asymptotically negligible.

(A5) This assumption is given meaning to by the Proposition below.

The more general assumption to have the initial joint distribution to be negligible is given
in Kreiss (1987).

Proposition 5.1. Let the densities f and g both satisfy assumptions (A1)-(A3); assume
moreover that f satisfies (A5). Then, under H(n)(O), as n — oo,

() = { n—u) Z b5 0 Fi N (Gler))Fy (G(et_u))} /T + op(n™11?)

t=u+1
with G(z) = [*_ g(z)dz.
Corollary 5.2. Let the densities f and g both satisfy assumptions (A1)-(A3); assume
moreover that f satisfies (A5). Then, under Hé”)(e), as n — oo, any k-tuple

/
<(n — i) (0),..., (n — ik)l/%;ﬂ?k(e))
is asymptotically N'(0, Ipxp).
5.3. theorems for adaptive rank tests.

Proposition 5.3. Assume that f and g both satisfy (A1)-(A4); assume that f moreover
satisfies (A5). For all T = (11,...,7p) € RP, consider the sequence a,(T;0) characterized

by
= u Z 1 Tiz =
: - z _ u 1.
;au<‘r70)z 1_ 921 ZTz Q;QU(G)Z ), 2l <
Then,
n 20 00) — 7 (8)] = 5(f5 9)T(f5 9)(Z) " 2au(n'/? (8™ — 6):8)) + 0p(1)

)

and
Al — Ao = 7(F:0)T(:0) (T )Te(0)n* (07 —0) + 0p(1)

under Hé”)(e), as n — oo, where
1
a(f;g):/o F () Gy () du

and

150 = [ 00, o (67 0)
I'g(0) and Iy are defined in (5) and (1), respectively.
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note. From this proposition, neither f;ni(é(”)) nor AEZ%(”) are asymptotically invariant,
since the right-hand sides of equations both depend on the unspecified under lying density
g.

After the proposition above, we can have a more general statement as follows.
Proposition 5.4. Let the assumption of Proposition 5.2 be satisfied. Suppose that the
estimator f™) of fi is based on the order statistics of the residuals 7Z1(0) and is consistent
in the sense that

(n) (n) (n) (n)
R R ~ R . R

1 t 1 t—u | F(n) -1 t F(n) -1 t—u
on °f (n—l—l) ! <n+1> Gfon © (F77) (n—i—l)( ) (n—i—l)

where FM denotes the distribution function associated with f. Then, under H}")(B),

2
Ey

1

i, (6) = 1(6) + ol ).

Part 3. Reference

e Optimal testing for semi-parametric AR models from Gaussian Lagrange Multipli-
ers to Autoregression Rank Scores and Adaptive Tests (2006)

e Unimodality wikipedia

e Theory of Rank tests



MATERIALS FOR 5/19 (THE FIRST PART TO HALLIN&WERKER)

GEN RYU

REFERENCE

(1) [article] Kreiss(1987)
On Adaptive Estimation in Stationary ARMA Process
(2) [article] Hallin and Werker(2003)
Semi-parametric efficiency, distribution-freeness and invariance
(3) [article] Hallin and Werker(1999)
Optimal testing for semiparametric AR models: from Lagrange multipliers to au-
toregression rank scores and adaptive tests
(4) [article] Fabian and Hannan(1982)
On estimation and adaptive estimation for locally asymptotically normal families
(5) [book| Bickel et al.(1998)

Efficient and Adaptive Estimation for Semiparametric Models

1. ARMA MODEL
The process {X;;t € Z} which satisfies

p q
X — Z a; Xi—; = e + Z bie;—_; for all t € R,
i=1 i=1

are concerned in the paper. Denote the density function of e; by f(x), and the common
distribution of (e1—q,...,€0; X1—p, ..., Xn) by gn(-;6), where 6 € © is the underlying pa-

rameter.

note. one can see that

n

gn(:0) = go(er—q, - -, e0; Xo:0) [ [ Fler{erq, ... Xi}),
t=1

where

[y

q—

t D S
ei{ei—g,- ., Xi} = Zﬂk—1 <_ZaiXt+1—k—i> + Ze—s (Z 5t+s—kbk> '
=1 =0 k=0

s=

Date: May 19, 2012.
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note2. Using the representation of the common distribution above and Lemma 2.2 in
Appendix, we have

dPno  golei—q,---,Xo;0) ﬁ f(ed = (0 —60)Z(j — 1;6,60))
dP,g,  go(ei—q---,X0;60) '

With the following additional abbreviation,
f(ej(00) — (0 —00)'Z(j — 1,6,6))

¢2 0 79 = 5
3 (6o-9) 7e5(00))
we have
dPy g go(e1—q, - .., Xo;0) -
lo — =lo +2 log ¢;(0,0).
gdPn,eo go(ei—q,....x0:60) JZ::I g 9360, 9)

2. DEFINITIONS

2.1. LAN. The LAN property here is defined the same as Fabian and Hannan(1982). LAN
(0, My, vn) holds if, for each n € Z, 0 € ©,,, M, is a k x k positive definite matrix, v, a
k-dimensional random vector on X, such that

Ely 5 N
and if, for each bounded sequence (t,) C R¥, §,, = 6 + M, Y Qtn is eventually in ©,,, and
Gn € dEy 5, /dEy ¢
implies
Gn/pt. () = 1 in (E, g)-prob.

Here, N denotes the integral with respect to the normal (0, 1), and py(x) = et"=~IItl*/2,

note. The convergence in distribution at first shows the normality and the statement under
the convergence in distribution shows the two density is contiguity.

2.2. LAM. [Fabian and Hannan(1982) page 463] If Condition LAN (6, M,,, ;) holds then
(Zy) is LAM(0) (locally asymptotically minimax at 6) if (Z,) is a sequence of estimates
for which

lim lim sup En,(;l(QnM%/Q(ZTL —9)) =Nl
k—o00 n—00 \|M}L/2(5—9)IISK

holds for every sequence (@) in the collection of all orthogonal k x k matrices and for
every bounded loss function [ on R¥.

Definition 2.1. A sequence (Z,) of estimates is called reqular(d) if
M71z/2(Zn —0)—v =0 in <En79>—p7"0b.

note. v, is the part which converges to the standard normal distribution in the LAN.
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Theorem 2.2. Let (Z,) be a sequence of estimates. Then the reqularity(0) of (Z,) implies

1/2 _
B i) o N
for every sequence 6, = 0+ Mn_l/2

implies that (Z,) is LAM ().

tn such that (t,) is bounded; the latter property, in turn,

2.3. Discrete sequences of estimators. [Bickel(1982)] The discrete sequences of estima-
tors {f,,} satisfies that 6, is given by one of the vertices of {6 : 8 = n=V/2(iy, ... ip1q),i; €
Z} nearest to 6, which is a sequence with

Vn(6, —6p) is bounded by a constant ¢ > 0.

This idea is due to Le Cam(1960), (1969), (1970) for construction of an efficient estima-
tor.

Theorem 2.3. If P = {Py;0 € O} is a regular parametric model on a Euclidean space X
and 0 is identifiable, then there exist uniformly \/n-consistent estimates of 6.

The steps are as follows:

(1) Construct ,, uniformly \/n-consistent as in theorem 2.3 below.

(2) Form a grid of cubes with sides of length cn~/2 over R¥, given 6, define 6 to be
the midpoint of the cube into which 6,, fallen. (This means that € is also uniformly
\/n consistent.)

(3) Define

n
On =05+ 01> T HO)I(X,,05).
i=1
Theorem 2.4. If P is a regular parametric model and if there exists a uniformly /n-

consistent estimator 0, of 0, then the estimator 0,, given above is a uniformly efficient
estimator of 0.

note. It is important for the result above that the sample space is Euclidean.
note2. The result is also important since even if the maximum likelihood estimate 6,, does
not exist, we can define a one-step Newton-Raphson approximate ’solution’ by

n -1
=1 i

Part 1. Local asymptotic normality for ARMA process

Happrox 0
GrPProx =6, +

3. ASSUMPTIONS

3.1. Assumption for stationary and invertibility and etc.
(S1) The polynomials A(z) =1+ Y7, —a;z" and B(z) = 1+ >_%_, ;27 have no zeros
with magnitude less or equal to one.
(S2) The two polynomials have no zeros in common and a, # 0 or b, # 0.
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3.2. Assumptions for LAN.

(A1) f(z) >0,z €R; [T af(x)de=0; [ 2*f(z)ds =0 < oo; ‘

(A2) f is absolutely continuous on finite intervals, i.e., there exists f such that for all
—co<a<b<oo, f(b)— f(a) = fabf(ac)d:v;

(A3) letting ¢y = —%, the generalized Fisher information [ qb}(a:)f(x) de = Iy =
J*QIf1 is finite.

(A4) the score function ¢ ¢ is piecewise Lipschitz, i.e., there exist a finite partition of R
into nonoverlapping intervals Ji, ..., J; and a constant Ay such that

lpr(x) — dr(y)| < Aglz —y| Ve,y e Ji,Vi=1,... k.

(A5) f is strongly unimodal, i.e., ¢¢ is monotone increasing.
(A6) go(eo, Xo,0n) — go(eo, Xo,00), in Ppy,-probability if 6, — 0.
(A7) There exists a sequence {6,} of estimators which satisfies

Vil o) = Op, (1),
(A8) ¢ is assumed to satisfy
tim [ (ol + 1)~ p(2))f(@) do =0,
ty [N =D ) a0 - 1),

(A9) In order to construct the adaptive estimator, the following conditions on the den-
sities f are required:

/:C4f(x) dx < oo,
and f is symmetric about the origin.
note. All stable densities are unimodal. note2. (A5) = (A2).

3.3. Interpretation of the assumptions.

(A1)—(A3) The LAN result holds under these assumptions;
(A4) This assumption induces that the influence of starting values on residual autocor-
relations is to be asymptotically negligible. In other words, it can be shown that

Eg| A (0) — Ap(0) | = o(1)
holds true, where
o 2N s Y(j k)
A, (0) = T j;so( i(0)) ;Bkl (E(j — k;H)) ’
and

t
& =) Br1(Xepip — a Xy — - — apXyi1_pp)-
k=1
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(A5) This assumption is given meaning to by the Proposition below(in Hallin& Werker
part).
(A6) It is necessary to assume the convergency of the initial observation.
(A7) The existence of \/n-consistent initial estimators {f,,} is assumed to construct reg-
ular estimates. In fact, (A7) holds for estimators for which the usual CLT is valid,
i.e., for all the standard estimators.
As an example in Anderson(1971), consider AR model as follows:

(3.1) Yy + By 1 = uy.

or

(3.2) Yo+ Brye—r+ -+ Bpyr—p = ur.

Under the assumption (A.1) below, we can write the process as

e o]

ye=Y (-B)ws, t=..,—1,0,1,....
s=0

Let F' be the sample variance, then it can be written in the form like

o0

F = Eyy; =Y (—B)°*S(-B')".
s=0
Also define F as
Py BB,
s=0

where

Assuming conditions in the set 1 and set 2 respectively below,

(A.1) {y:} is a sequence of random vectors satisfying (3.1) with {u;} independently
and identically distributed with Fu; = 0 and Fu,u;, = X;

(A.2) —B has all characteristic roots less than 1 in absolute value;

(A.3) F is positive definite;

(A.1)" {y:} is a sequence of random vectors satisfying (3.2) with {u;} independently
and identically distributed with Fu; = 0 and Eu? = o?;

(A.2)’ The roots of the associated polynomial equation are less than 1 in absolutely
value,

then we have theorems which give the estimators satisfing the assumption(A7).

Theorem 3.1. Under the set 1 of assumptions, ﬁ(B'—B’) has a limiting normal
distribution with mean 0 and covariance matriz F~' ® X.
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Theorem 3.2. Under the set 2 of assumptions, \/T(,é — B) has a limiting normal
distribution with mean 0 and covariance matriz o> F =1,

Instead of (A.1) or (A.1)’, the result holds true even if we assume

(A.1)” Blug|***<m, i=1,2,...,p,t=1,2,..., for some ¢ > 0 and some m.
In conclusion, such estimators satisfying assumption (A7) exist under moment
conditions.

(A8) This is the definition of regularity on the model P, which guarantees the L2-
continuity of ¢ and the existence of it.
(A9) This is a condition for Theorem 5.7 to be true.

4. THEOREMS

The LAN property is established for ARMA model by using the assumptions of Rous-
sas(1979). Similar conditions sufficient for the LAN property are given in Swensen(1985).

Theorem 4.1 ((K-Theorem 3.1)LAN property for ARMA models). Let {h,} C RPY be
a bounded sequence and 0, = 0o +n""/?h,,. Under our assumptions (A1)-(A4) and (A6),
we have for

2 n
Ap(0) = — oei(0)Z(j —1;0,0), ¢=—f/2f,
(0) \/ﬁ; (e;(0))Z( ) /
the following two results:
1
log[dPr.p,, /dPn.gy ] = hy An(00) + Sy I(F)T(00)hn — 0,

in Py g,-probability, where I'(0y) is defined in Theorem 3.5 below (approzimation of the
log-likelihood ratio).

E(An(90)|Pn,90) = N(O’ I(f)r(eo))a

where =" denotes weak convergence (asymptotic normality of the approximating statistic).

Corollary 4.2. Under the same assumption as above {P, .} and {P,,} are contiguous
in the sense of Definition 2.1, Roussas (1972), page 7, and

£(An(HO) - I(f)r(90>hnlpn,9n) = N(Oa I(f)F(00)>

5. THE SUFFICIENT CONDITIONS FOR LOCAL ASYMPTOTIC NORMALITY

The 4 theorems below guarantee that the sufficient conditions for the LAN in Roussas
(1979) are fulfilled.

Theorem 5.1. For each 6y € ©, the random functions ¢;(6o,-) are differentiable in g.m.
[ Py, | uniformly in j > 1. That is, there are (p+ q)-dimensional r.v.’s ¢;(0p) = gb(e?)Z(j—
1;60,6p) = gb(e(;-)ZO(j —1) [the g.m. derivative of ¢;(0o,0) with respect to 6 at Oy] such that

¢j(90, 0y + )\h) -1

5 —hT$;(00) — 0, in g.m. [Py,] as A — 0
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uniformly on bounded sets of h € RPT? and uniformly in j € N. Finally, qﬂj(eo) s measur-
able with respect to Aj;.

Theorem 5.2. For each 6y € © and each h € RPH9, the sequence {(hT $;(60))?},5 € N, is
uniformly integrable with respect to Py, .

Theorem 5.3. For each 0y € © and j > 1 let the (p+ q) X (p+ q)-dimensional covariance
matriz I'j(0y) be defined by

T'j(60) = 4Eg,[ $;(60)¢] (60)] = I(f)Egy[ Z(j — 1;60,00)Z" (j — 1;60,60)].

ThenTj(6p) — T(00)I(f), as j — oo, in any one of the standard norms in RPTY, and T'(6p)
is positive definite.

Theorem 5.4. (i) For each 0y € ©, each h € RPYY and for the probability measure Py,,
the WLLN holds for the sequence {[hT¢;(00)]%,j € N}. Also

(i)

1 & ) .
- > {Eo[ (W7 (00))%|Aj—1] — [WT$(60) 1’} =0, asn — oo,
j=1
in Py, -probability.

Part 2. Existence and construction of LAM estimates
Lemma 5.5 (K-Lemma 4.1). Under assumptions (A1)-(A3) and (A6), we have for any
sequence {Z,} of estimates the following implication:

iz, — o) - "0

I(f)
implies that {Z,} is LAM.

Theorem 5.6 (Existence of LAM estimators). Assume {0,} C © is discrete and /n-
consistent for 6y € ©. Then 0,, defined below is reqular:

An(bo) = op,, (1)  ({Zn} is called Oo-regular)

S 1 Tu0)7 -

n — Un 77An n)y
N A (T e
Bu(0) = 3020~ 1:0,0)27( ~ 1:0.6).

j=1

Part 3. Construction of adaptive estimates

Theorem 5.7. Let {0,} C © be a discrete and \/n-consistent sequence of estimators of
0o. Under our assumptions (A1)—-(A3),(A6)-(A9) and

An(gn) - An(én) = Opeo(l)
holds, if ¢, — o0, gn — 00, a(n) = 0, d, = 0, o(n)c, — 0, gpo(n)~*/n — 0 and no(n)
stays bounded.
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6. SUMMARY

The parameter 0y (the coefficients in ARMA model) are considered in ARMA model with
independent and identically, but not necessary normally distributed errors. LAN is proven
in this general model where the sample is not i.i.d. Under the adequate conditions, the
LAM(Locally asymptotically minimax) estimators are proposed, and strongly adaptive
estimators are obtained. The approach is exactly the starting point of semi-parametric
method in ARMA models, which Hallin& Werker(2003) follows later on.

7. APPENDIX

7.1. Formulas.
Bs +b1Bs—1+ -+ byBs—q =0 for Vs> 1.

(L4biL - +b L) =) gLk,
k=0
J P g—1 s
ej = Z Br—1 <— Z ain-i-l—k—i) + Z e_s <Z Bj+s—kbk> :
k=1 i=0 5=0 k=0
00 q q—1 s
> Bra (Z biej—f—l—k—i) => e (Z ﬁj+s—kbk> '

k=j+1 i=0 s=0 k=0
J q q—1 s

Z Br—1 Z bi€ji1k—i | = €j41-k — Z e_s Z Bjts—kbk | -

k=1 =0 s=0 k=0

p q
Z G?Xt_i = Z b?et_i(eo).
1=0 =0

7.2. Lemmas.

Lemma 7.1 (K-Lemma 2.2). With

J
Z(] - 17 9) 00) = Z 6]6,1((9)()(]',]9, e 7Xjfk+1fp; 6?7]{, ceey 6?7k+17q),
k=1

- Zﬁk—l(‘g)(yl(j - k‘),E(j _ k;eo)/)/7
k=1

6j(90 — €j(9) = (9 — 90)’Z(j — 1; 9, 00)
holds true.



SUMMARY OF HOSOYA-TANIGUCHI(1982)

GEN RYU

1. MODELS AND NOTATIONS

1.1. Scalar linear processes.

(1.1)

(1.2)

(1.3)

1.2. Vector linear processes.

(1.4)

(1.5)

z(n) = ZG e(n—j), nez

(sx1) = (8*17) (p*1)

We define Ix(w) and f(w) similarly for (1.2).

2. HISTORY
Discoverer and Year Model 0
Whittle(1962) scalar;e(n) ~ i.i.d(0, o) [ If’g((‘f)) dw
Walker(1964) Hannan(1973) o2 depends on 0
Hosoya(1974) same to the above J7 log fo(w) + ]f);((;”)) dw
Hannan(1976) Dunsmuir(1976,1979) | vector;e(n) ~ i.i.d(0, K()) | 2w log det K (0) + [™_tr{ fo(w) " Ix (w)}dw

TABLE 1. Transition of the estimators

Date: September 2, 2011.
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In Hosoya-Taniguchi(1982), a criterion is proposed as follows.

(2.1) D) = [ " logdet fi(w) + tr{fi(w) " f(w)}dw

—Tr
3. THEOREMS

Here, the model is vector-valued and is represented by

;

)= ) G(e(n—j), neZ
=0
(3.1) (5% 1) (sxp) (px1)
E{e(n)} = 0
E{e(m)e(n)'} = d(m,n)K

In the paper, an assumption is assumed throughout.

Assumption 3.1.

(o)
(3.2) > G () KG(j) < .

§=0
Under this assumption, the process {z(n)} is a second-order stationary process. The spectral
density matriz of the process is shown as

(3.3) flw) = %k(w)Kk(w)*, —rm<w< T

Theorem 3.2. {z(t)}: zero-mean second-order stationary process. Fy = FF.
Assumptions:
(1) Ve > 0, Var{E(xo(t + 7)|F)} = O(1727¢) uniformly in t, fora = 1,...,p.
(2) VI,m >t, ¥n >0,
EIB{za(l)zs(m)|F)} — Elaa(zs(m)} = Offmin(|i - ], lm — )} ] wniformiy
mt, fora=1,...,p.
(3) Any element of f(w) = {fap(w);a, 5 =1,...,p} is continuous at the origin; f(0)
s non-degenerate.
Result: &y = N72 SN a(n) — N(0,27£(0)).
Theorem 3.3. B = B.(t).
Assumptions:
(1) Vﬁla 627 m7VG > 07
Var[E{eg, (n)eg,(n +m)|B(n — 1)} — §(m,0)Kg, 3,] = O(1727¢) uniformly in n.
(2) vn >0,

E|E{es, (n1)eg, (n2)evetas (n3)es, (na)|B(n1—7)}—E{eg, (n1)eg, (n2)€betas (n3)ep, (na) }| =
O(7=1), uniformly in n1, where n; < na < ng < ny.
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(3) fsp are square-integrable.

(4) 227 jasmingty |QB, .5, (41, 52, J3)| < o0.
Results:

(1) VN{CZ, 1 (m) = 7, oy ()} = N(O, ..)

(2)
Cov(VN{CZ 0, (m1) = 70, (m1)}, VN{CZ o, (m2) = 70, (m2)})

— 27 /7r [foras (W)fa2a4 (w) exp{—i(m2 — m1)w} + fa1a4(w)fa2a3 (w) exp{i(m1 + ma)w}] dw

—T

p T
tor Y / / explimiws + imaws) e g, (w1)

B1,--yBa=1
Kaa (—w1)Kasps (w2)Kau g, (—w2) @5, g, (w1, —wa, wa) dwrdw
Lemma 3.4. D(fr(y), f) = mingeo D(f1, f)-
Assumptions:
(1) ©: (C R?) compact.
(2) 01 7& 02 = f91 7£ fthetag-
(3) fo(w): positive definite.
(4) fo(w) is continuous w.r.t 0, w.
Results:
(1) Vf € P,3T(f) € © s.t. D(fr(y), f) = minyeo D(ft, f).
(2) T(f): unique, T(fn) —w f = as N = 00, T(fn) —u [.
(3) VO € ©,T(fp) =0.

Theorem 3.5. 31T(f) € ©° ;

s 62 1 32
= — - ——— log det d
v = [ | gt s + g tosdensoto)] s
where My is nonsingular matriz.
Assumptions:

(1) Vﬂl,ﬁg,m,Ve > 0,
Var[E{eg, (n)eg,(n +m)|B(n — 1)} — 6(m,0)Kp,p,] = O(7727¢) uniformly in n.

(2) vn >0,
E|E{es, (n1)es, (n2)epetas (n3)ep, (na)|B(ni—7)}—E{ep, (n1)ep, (n2)eveta; (n:3)ep, (n4) } =
O(7=1=m), uniformly in n1, where ny < ny < ng < ny.

(3) fag are square-integrable.

(4) 2257 o gsinsty @B, .5, (J1, J2, J3)| < oo.

(5) f(w) € Lip(a) where a > 3.

Results:

(1) p-limy—eoT(L) = T(f).



4 GEN RYU

(2) as N = oo, VN{T(L,) = T(f)} = N(0, M;'VM;"). where

7y = dr /ﬂtr[u O R A o N

- 6=T(/)

T, 0 u,v =
+27T Z // { ( t 1)879f9( ’ )(WQ)} Qrtuv(_wthv_wZ) dwld(*)Qa
o : 0=T(f)

rtau,v=1

where f(gr’t) (w) is the (r,t) element of { fo(w)} ™1

Corollary 3.6.

Vu=am [ [ 1) g ) @ g ()|

- 0=T(f)

YD SHD S I R Py AR LY

a,b,c,d=1rtu,v=1 0=T(f)

Era(—w1)kp (w1) kue(—w2) ko (w2) Q% pea(—wi, w2, —wa) dwydws

Proposition 3.7. Assumption:

Kabed ifny =ng=n3=ny

0 otherwise.

(3.4) cum{eg(n1), ep(ng), ec(ng), eq(ng)} = {

Result:

u=ir [0 [f<w>£{ft<w>}—1f<w>£l{ﬁ(w)}—l] o

- 0=T(f)

3 [ [ R U} )]

a,b,c,d=1 ab

o [ R e k@] oy

cd

In the case where f(w) = fyp(w) and 6 is the innovation-free parameter, the second term

in the right-hand side will be 0. On the other hand, in the case of f(w) # fyp(w), even if

(3.4) is satisfied, the quasi-Gaussian maximum likelihood estimates for the innovation-free
parameters are generally not robust against the fourth cumulant. In the case s = 1, that is

in the scalar case, the quasi-Gaussian maximum likelihood estimates for the innovation-free

parameters are robust against fourth cumulant even if f(w) # fp(w).
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4. APPLICATION

4.1. An autoregressive signal with white noise.

i st—j7)=mn(t), nelk

E{n(t)} =0
E{n(t)n(s)} = 04416(t, s),

where all zeros of > 6,27 are assumed to be outside the unit circle.

(4.1)

X(t) = s(t) +e(t)
E{e(t)} =0
Ee(t)e(s)} = Oq420(t, 5)
E{e(t)n(s)} =0  forall t and s.

Proposition 4.1. For the model above, we give the assumptions:

(4.2)

(1) {e(t)} and {n(t)} are fourth-order stationary processes.
(2) the vector-valued process {e(t),n(t)} satisyies
(a) vﬂla BQ,m,\V/E > Oa
Var[E{eg, (n)eg,(n +m)|B(n — 1)} — 6(m, 0)Kp, 3,] = O(7727) uniformly in
n.
(b) Vi >0,
E|E{eg, (n1)ep, (n2)evetas (13)ep, (na)|B(n1—7)}—E{eg, (n1)eg, (n2)eveta; (n3)ep, (na) | =
O(7=11), uniformly in n1, where ny < ny < ng < ny.
(c) fap are square-integrable.
(d) D277 s dsminsty Q5. 5, (G15 525 J3)] < o0.
(3) 6° (true value of §) € B x K1 x Ko, where B, K1, Ko is compact subset respectively.
Results:

(4.3) VN{T(Ix) = 6°} = N(0,M; 'V M)

where

V=t [ A} 5 U @)} U)o

b Y [ [ g tmteny™ g Gy

a1,02,03,04=1

Koy (—w1)kay (W1)Kas (—w2)kay (w2) QS (—wi, wa, —ws) dwydws.



ISOMETRIC APPROXIMATION

YAN LIU

1. ESSENTIAL POINTS
Definition 1.1 (e-nearisometry and (1 + €)-bilipschitz). f is an e-nearisometry if
-yl —e<[fr—fyl<|z—yl+e
for all z,y € A, and that f is (1 + ¢)-bilipschitz if
[z —yl/(1+€) <[fz = fy| < (1+ €z -yl
for all z,y € A.

Lemma 1.2. Suppose that A C R"™ is a bounded set and that f : A — o is a map satisfying
the nearisometry condition. Then there is an isometry S : A — la such that

Sz — fo] < eav/e

for all x € A. Further, if A satisfies a thickness condition, then
Sz — fa| < cne/q,

where q is a thickness parameter.

(The thickness condition is not so clear in the paper.)

Date: August 3, 2014.



SUMMARY-ASYMPTOTICS OF TESTS FOR A UNIT ROOT IN
AUTOREGRESSION

GEN RYU

Suppose that {Y; : ¢t =1,...,n} is generated by the first-order autoregressive process
(0.1) Y, =0Y,_1+e, Yo=0,t=1,...,

where e;’s are i.i.d. N(0,0?) random variables and

0 = exp(—).

c
n
As a generation of the LSE 6 and 901702,

Z?:Q YiYi

0 = , c1,¢c9 > 0.
C1,C2 Z:,:—Ql }/;2 + Clle + CQYnQ 1 2
2 Y=Y (Yl - Y .
901’(;2 — n_l ZE—2( t )( t7 1 ) _ , 01702 Z O7 Y — Z:}/t/,n7
(Y=Y +a(Y1 —Y)2 (Y, - Y)? —1

are supposed.
The hypothesis is supposed as

H:0=1 vs A:0¢€(0,1).

For the testing problem, the following tests are introduced:

V3N
(0.2) Ky, = G2 ;(901,02_1);
n
(0.3) Ky, = 5(901’62—1);
2\
(04) K3n - Z 5'2 (061762_1)7
t=2

where 62 =n"1 >0 (V; — écl,CQYt,l)Q.

Date: April 10, 2012.
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1. DEFINITIONS

1.1. Ornstein-Uhlenbeck process. Let J.(t) be an Ornstein-Uhlenbeck process

t
Jlt) = [ expl(t = )} (),
0
which is generated by
dJ.(t) = cJ.(t)dt + dW (),

with initial condition J.(0) = 0.
1.2. integrated process.
For the process above,

when ¢ # 0, it is called a near-integrated process;
when ¢ = 0, it is called an integrated process.

2. ASSUMPTIONS

(1) E(er) =0 for all ¢,

(2) su ptE|et|5+€ < oo for some > 2 and e >0,

(3) 02 =lim, 00 B(n~152) exists and 02 > 0 where S; = >.'_; es,

(4) {e:} is strong mixing with mixing coefficients ., that satisfy » >, o 28 < .

3. THEOREMS AND LEMMAS

Lemma 3.1 (Phillips(1987b)). If {Y;} is a near-integrated time series generated by (0.1),
then, as n — oo,

()nﬂﬁq]iaJ(y

(2) n*2 300 1Yt—>‘7fo t)dt;

(3) n 2 3 1Y2—>‘72f0 2 dt;

(4) n~t Yo Yioie 4, 52 fo t) dW (t)+ (02—0 ) with 02 = limy, 0o 1~ Z?Zl E(e?).

Theorem 3.2. If{Y;} is a near—mtegmted time series generated by the model above, then,
as n — oo,

R 1-2 22 (1) dt — 2
1By, — 0) & L 202 Ck 7e/o”
2[0 2dt
Corollary 3.3. If 0 =1 (i.e., c=0), then
. 1-2 1 2 2 2
an£2—1)f>( CﬂVV() oe/0”
2f0 t)2dt

Theorem 3.4. If {Y;} is a near-integrated time series genemted by the model above, then,
as n — oo,

2 -2 1 —2¢)T?% + 4¢sTH — 2 —1)H?2 —2HW (1) — 02 /02
n(l — g) 4 Z2G 1 = 26)T7 + des (1 +e2—1) (1)~ 02/o”,
2(G — H?)
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where G = fo 2dt, T = J.(1) and H = fol Je(t)dt.
Corollary 3.5. If& =1, then, as n — oo,
A d (1 —2c9)T2 +2(2co — 1)THy — 2(c1 + co — 1)H2 2/0
n(lc e, —1) = 2(G HQ)
where Gy, = fo 2dt, T, =W(1) and H, = fo t)dt.

Theorem 3.6. Under H, as n — 0o, we have
i (1—2c)W(1)* -1

(31) Kln — \/§ )
d (1 —2c)W (1) —

(32) Kgn — 2\/§f0 (t)Q 2t )

(3.3) Ky % d, (1 —2c)W(1)% —

fo ()2 dt)l/Q )

Theorem 3.7. Under A,, as n — oo, we have

a (1= 2¢)Je(1)? = 2¢ [y J(t)?dt —1

(3.4) Ki, % — ,

d_ (1 —2¢2)Je(1) —QCfo 240t —1
(35) KQn — 2\[ fo 2 dt :
(3.6) Ks, b (1 —2¢)J(1)* — 2cf0 2 g _ 3

fo £)2 dt) 1/2



PAIRWISE SCORE FUNCTION

YAN LIU

SOMETHING HAS TO BE SPECIFIED

Why do we use non-negative weights there in the bivariate marginal densities? In ?,
they mentioned that if the weights are all equal then they can be ignored: selection of
unequal weights to improve efficiency is discussed in the context of particular application
in their paper. A. Since there are many scores in the estimating function. w; ; are weights
which can be used for example to reduce the number of pairs included in the estimation.
The parameter estimates are obtained by maximizing expression.

Or

If the weights are all constant, then they can be ignored. Selection of unequal weights
may improve efficiency, as explained in ?.

Date: May 29, 2014.
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1. BACKGROUND
e Y ¢ dimensional random vector;
e 0cOCRY d>1;
e (Y1,...,Y,) are independent

Suppose that it is difficult to evaluate f(y;0) and the corresponding likelihood L(6). On the
other hand, we can compute the likelihoods for pairs of observations (y;,y;) fori =1,...,n,
and h,k =1,...,q. The pairwise likelihood defined from the bivariate marginal densities

frr(, 5 0) is given by
n ¢g-1 ¢

(1.1) pLO) =111 TI furWh vi:0)"s,

i=1 h=1k=h+1
where wzk are non-negative weights which do not depend on the parameter 6 or on y.
Then the maximum pairwise likelihood estimator 6 is the solution of

n g-1 ¢

(12) pUO) = - 10gpL(6) =53 D" whpUi(0),

i=1 h=1k=h+1
where

. ) o
(1.3) pUn(0) = 2 log fuk(yh, yp; ).

Remark 1.1. Here, the joint distribution of random vector is not assumed. The assump-
tions are correspond to the marginal distribution for bivariate part.

Note that (??) is a likelihood and the empirical likelihood can be defined. For the profile
empirical likelihood ratio function

(1.4) Rp(0) = sup{] [ npilpi > 0,> pi =1, pig(xi,0) = 0},
=1 =1 i=1

we only have to assume

qg—1 q
(1.5) 9(xi,0) = > whi pUL(0).

h=1k=h+1
Or.... Change the order of the summation! There are two variations of the empirical
likelihood.
(i) Usual one:
n
(1.6) pwn(6) =2 ) log{1+¢&'g(x:,0)}
i=1

(ii) Or dimensional one:

(1.7) pwm(8) =2 log{1 + & pU,(6)}.
r=1
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Proposition 1.2. Under H,

L
(1.8) pwa(8) = X5
Proposition 1.3. Under H,

L
(1.9) pwm () = Y wixd,
—~

<

where wj are the eigenvalues of the matriz H(0)~1.J(6).

2. SEMIVARIOGRAM
If
(2.1) V(s 85) = (llsi — s51)),
that is, the semivariogram depends only on the distance between the locations, then they

are called isotropic semivariograms.
One of the commonly used isotropic semivariogram models is the exponential model

(2.2) v(llsi — 85ll;6) = co + o(1 — pllEi=ssly.
3. WORDS
1. isotropic RN
2. anisotropic FEFEREMNZ
3. nugget I
4. sill +&H



BRIEF ARTICLE

GEN RYU

1. LEVY PROCESS
we denote its characteristic exponent by ¥,
Blexp{i(\, X1)}) = exp{~T(\)}.
Then the poisson process and Brownian motion can be shown as
) = el - ™), W) = JAR

For every a € (0,2], a Lévy process with characteristic exponent W is called a stable
process with index a, if U(k)\) = k*U(N). for every k > 0 and A € R% For o # 2,
the Lévy measure of a stable process of index « can be expresses in polar coordinates
(r,0) € [0,00) x S4—1 in the form

I1(dr, df) = r~*4drv(dh),

where v is some finite measure on Sgy_1.

Date: February 7, 2012.



SUMMARY OF LINEAR ALGEBRA AND THE WAY TO SPECTRAL
MEASURE

GEN RYU

REFERECEN

(1) William Arveson [2002]
A short course on spectral theory
(2) Sam Raskin [2006]
Spectral Measures and the Spectral Theorem

Part 1. Two Ideas

The fundamental problem of linear algebra over the complex numbers is the solution of
systems of linear equations. One can write the problem like:

a1 + -+ apTy = b1
2121 + - - - + a2pTy = bo

where a1, -+, ann, b1, by are given, and one attempts to solve for z1, ---, z,. It is also
usual to write the system in the matrix way, that is

Ax = b.

1. LINEAR OPERATOR

The existence of solutions for any choice of b is equivalent to surjectivity of A; uniqueness
of solutions is equivalent to injectivity of A. Thus the system of equations is uniquely
solvable for all choices of b if and only if the linear operator A is invertible.

However, in infinite dimensions the difficulty lies deeper than the things above, because
for most operators on an infinite-dimensional Banach space there is no meaningful con-
cept of determinant. In other words, there is no numerical invariant for operators that
determines invertibility in infinite dimensions as the determinant does in finite dimensions.

Date: June 9, 2012.
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2. EIGENVALUES

In finite dimensions, eigenvalues and eigenvectors for an operator A occur in pairs (A, x),
where Af = Az, and x is nonzero vector in C" and A is a complex number.

Let think the case more general. Vy = {x € C"; Az = Az} C C" is always a linear
subspace of C". However, V) is nontrivial if and only if the operator A — AI has nontrivial
kernel: that is to say, if and only if the operator A — AI is not invertible.

Assuming that A is invertible, one can find & by the decomposition of b. Let b be
decomposed by

b="b1 +by+ -+ by,

where b; is in V)\;, A1, ..., A, being eigenvalues of A, then @ is shown as

=M "by + A b+ + A by

Part 2. Spectral Measure
3. NOTATIONS

We denote any Hilbert spaces by H.

4. RiESz LEMMA

Lemma 4.1. If ¢ is a linear functionsl on H, then ¥ (v) = (v,w) for suitable choice of
weH.

note. one can decompose v = v1 + vo, where vy = 1@(}1‘2 w. Then 1 (ve) = 0 leads the lemma.

Lemma 4.2 (Riesz). If ¢ is a bounded bilinear functional on H, then there exists a unique
operator A such that (v, w) = (Av,w) for all v,w € H.

5. ADJOINTS

Theorem 5.1. For A an operator, there exists a unique operator A*, the adjoint of A,
satisfying the identity (Av,w) = (v, Aw) for all v,w € H.

Definition 5.2. An operator A is Hermitian if A = A*. An operator A is normal if
[|Av|| = ||A*v]|| for all v € H.

Proposition 5.3. An operator A is nomal iff AA* = A*A.

note. Note that in the Riesz lemma, if ¢ is symmetric, that is, ¢(v, w) = ¢(w, v), then the
resulting operator will be Hermitian.
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6. PROJECTIONS

Definition 6.1. If M is a closed subspace of H, then elementary Hilebert space theory
tells us that every vector v € ‘H has a unique decomposition v = vy + ve, where vi € M
and vy € ML, We define the projection onto M to be the map P : v+ vy. Note that P is
necessarily an operator. If M = C, we denote P by 1, and if M = {0}, we denote P by 0.

Definition 6.2. Let {P;}icr be projections onto M;. We partially order these by P; < P;
if M C Mj. We further define ) ;. P; to be the projection onto Ujcr M.

Theorem 6.3. An operator P is a projection if and only if it is Helmitian and idempotent
(P?=P).

note. It suffices to prove that for all v € H, (Pv,v — Pv) = 0.
note2. In finite case, the projection can be written in the form of elements in the operator,
that is,

P = ApAy)

where A;; is (i, j)-element of A.

Corollary 6.4. If P is a projection, then for all v € H, ||Pv||> = (Pv,v).

7. SPECTRAL MEASURES
Let B(C) be the set of Borel sets in C and P(#) the set of projections on H.

Definition 7.1. A spectral measure is a function E : B(C) — P(H) satisfying the following
properties:

(1) E(0) =0 and E(C) =1;
(2) If {Bn}nen is a family of disjoint Borel sets, then E(|JBy) =>_ E(By).

8. PROPERTIES OF SPECTRAL MEASURE
8.1. Equalities and Inequalities.
E(ByUB))+ E(Byn By) = E(By) + E(By);
E(By)E(ByU B;1) = E(By);
E(BynNBy) = E(By)E(By).

Furthermore, if By C B, then
E(By) < E(By),

where the definition of ”<” is given in (6.2).

8.2. The sufficient condition for spectral measure.

Proposition 8.1. Suppose E : B(C) — P(H) is any function such that Yv,w € H, the
function E*(B) = (E(B)v,w) satisfies E*(J Byn) = > E*(By,) and that E(C) = 1. Then
FE is a spectral measure.
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9. SPECTRAL INTEGRALS AND THEIR ASSOCIATED OPERATORS

Definition 9.1. Given a spectral measure E, spectral integral is defined as the Lebesque-
Stieltjes integral

/ FOVEN 0, w),  Vo,w e H.

Definition 9.2. The spectrum of a spectral measure E is A(E) = C\UU;, where the union
is taken over all open sets U; for which E(U;) = 0. We say that E is compact if A(E) is
compact.

Theorem 9.3. For E a compact spectral measure, there is a unique normal operator A
such that Yv,w € H, [ A(E(X)v,w) = (Av, w).

note. First, show the boundedness of ¢(v, w) for the existence of operator. Next, show the
uniqueness of the adjoint. Last, show the normality of the operator.

10. THE SPECTRUM OF AN OPERATOR
Definition 10.1. The spectrum of an operator A is the set A(A) = {\ € C|A—\lis not invertible}

Theorem 10.2. If A is an operator, then A(A) is compact. In particular, if X € A(A),
then ||| < [[A]].

To prove this theorem, we need a proposition here.
Proposition 10.3. If A is any operator such that ||A — I|| < 1, then A is invertible.

Finally, what we assumed on the spectrum can be justified by the theorem below.

Theorem 10.4. If E is a compact spectral measure and A = [ MdE(X), then A(E) = A(A).



LONG RANGE DEPENDENCE

YAN LIU

1. REFERENCE
McElroy and Holan (2014), AS.

2. NOTATIONS
2.1. Notations.
1. Z; e
2. (FZMZy") Ay o (F)

3. FUNDAMENTAL SETTING

3.1. Basics.

(i) autocovariance function (acf)
COV(YShSszTl,Tz = E[WSLSQWTLTQ] = Vs1—r1,52—712-

for all sy, s9, 11, 79 € Z.

(ii) the commutativity of the field Y
Yhi,ha (F) = V—h1,—h2 (F)

(iii) the spectral density

h1 7h
/\17)\2 Z ’th,hg Z 1222‘
h1,ho€Z

We have the following by the Fourier inversion

1 s ™ _ _
ke (F) = 5 / F(i, M) Zy ™ Zy 2 dNid)a.

Date: November 30, 2014.
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3.2. Assumptions. There exists 0 < a(f) < 1 such that for each § > 0,
(A.1) g(0) = |™ _log f(x,0)dx can be differentiated twice under the integral sign.

(A.2) f(x,0) is continuous at all (z,0), x # 0, f~1(z,0) is continuous at all (z,6), and

f(x,0) = 0(Jz| =% asz — 0.

(A.3) 0/00;f Y (z,0) and 6?/06,;00xf~(z,0) are continuous at all (z,6),

300 Hz,0) = O(]a:\*a(e)*‘s) asx — 0, 1<j<p,
J
and
>’ a(0)—=5 ,
39-39kf (z,0) = O(|z] ) asx—0, 1<jk<p.
J

(A.4) 0/0xf(x,0) is continuous at all (z,0), x # 0, and

;f(x,ﬁ) = O(\a?|*a(9)*1*5), as z — 0.
x

(A.5) 02/0200,f Y (x,0) is continuous at all (z,6), z # 0, and

82

3:E89jf (x,0) = O(|z] ) aax—0, 1<j<p

(A.6) 9%/02%00,f *(x,0) is continuous at all (z,0), z # 0, and
673]“_1(:17 0) = O(|x]a(9)_2_5) asx—0, 1<j<p
02?200 ’ ’ -
4. MAIN RESULTS
Proposition 4.1. The act of the cepstral model is given by

e) -
Yhi,h2 (F) =e700 Z Vi1,92 ((I))[ Z Vhi+j1—k1,ha—ja—k2 (U)Vk1 (B) 782 (2) |5
J1,J2€L ki,k2€Z
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where v(®), v(¥), v(E) and v(Q) can be calculated in terms of their coefficients, which are
recursively given by

1 & J2
Vjrjo = H Z kl(Z ¢j1—k17j2—k2®k1,/€2)7

k1=1 ko=1

1 p1 J2
Djrga = ]T Z kl(z (bjl*kl,jz*kz@*kl,h)’

k1=1 ko=1

1 p1

§ o= — O K10k 08,k
=
-
1 p1

ij = - E kQ@ngQw]'Q,kQ
J2 0
e

for j1 > 1 and jo > 1.

5. FURTHER READING

See Sinai (1976, TPA) for the derivation of the spectral density of long-range de-
pendent process

See Granger and Joyeux (1980) and Hosking (1981) for the modeling of strongly
dependent phenomena.

Fox and Taqqu (1983), technical report 590, Cornell Univ.

Fox and Taqqu (1985), AP

6. NOTATIONS

1. Xy, teZ a strongly dependent time series

2. f(x) the spectral density of the time series
3. L a slowly varying function at infinity
4. @ the exponent

5 G a polynomial

6. V; = G(Xy)

7. sg(w) = 02gg(x) the spectral density of the process Y;
8. Lgy a slowly varying function

9. (0,0%) the parameters

10. Ang = {ap(t — 8)}t,5=1,..N

11 py = 23,5 [BG(X,)G(X0)| Vag (1)
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7. FUNDAMENTAL SETTING

7.1. Basics.
(i) Estimators

A~

On = arg m@in NﬁlY'ANvgY,
where Y = (Y1,...,Yn).

(ii) ag(t) is defined by

ag(t) :/ e gyt (v)d.

(ill) vmn(t—s)

Ot = 8) = —— [EG™(X)G™ (X,)|Vag, (t — s).

 min!

Pk = Z Z Um,n(t)

m,n>0; m+n=~k teZ

(iv) pr

(ss:7.2) 7.2, Assumptions.
(i) The spectral density f(z) satisfies

f(x) =|2z|7°L(1/|z|), =e[-mn], (0<a<l).
Remark 7.1. Note that « =1 —-2H (1/2< H < 1).

(ii) gp satisfies
go(x) = || D L p(1/|z]), 2| <,
where 0 < ag(f) < 1.

(iii) Suppose

/ log gg(z)dx =0, 6€O. (7.1)[eq2.3:gt1999

—T

(iv) (9%/06;00,)g, ' (z) is a continuous function in (z,6).

(v) For any small fixed number ¢ > 0,

i951($)‘ < C|$|aG(0)_€, |z| <7 for 6 = 6,
26
2

Cla|*c@=1=¢|z| <7 for 6 = 6.
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(vi) the spectral density f of the Gaussian sequence (X;) satisfies

L @) < Clal, el <,

where € = €(f) > 0 is any fixed number.

8. MAIN RESULTS

Theorem 8.1. Assume that (7.1) holds and that g, *(x) is a continuous function. Then
almost surely,

lim éN = 00.
N—o0
lim 6% = op.
N—oo

(thm2.2:gt1999) Theorem 8.2. Suppose that Assumptions 7.2 hold, that Wg_l exists and p1 # 0. Then
On — 0 = _(ZWJ(Q))_IWO_OlpI( ZX ) (1+ op(1)).

Corollary 8.3. Theorem 8.2 implies that
INT=L7YN)) (O — b0) 5 (2m0d) T Wy pr,
where ¢ is a Gaussian random variable with zero mean and variance F¢? = 2/(a(a + 1)).

Example 1. In the case of G(X;) = X;, G(X;) = 1 and EG(X;)G(X;) = EX; = 0 and
therefore p; = 0.

Theorem 8.4. Let p; =0, pa # 0.
(i) If 1/2 < a < 1, then

NO=IL=Y(N) by — 00) = (2n02)~ "Wy paln,

where Is has the Rosenblatt distribution, i.e.,

exp(it(z1 + x2)) — 1 B ~
’ /Rz o) el T 2 (de) 2 (dea), o> 1)

(i) If 0 < o < 1/2, then
VN (b — 60) 5 N (0, (2m03) 2 W, ' DW,.Y),
where D is a p X p matrix with entries
di) = | Y af) (s1)af) (s2)Cov(G(X)G(Xtss, ), G(X0)G(X,,)
teEZ | s1,52€7Z

9. WORDS

1. rather the exception than the rule &% &2 & W2 IXHIAHIT



YAN LIU

10. NEW KNOWLEDGE

e The compensation effect in the Whittle estimator appears when the observations
X; are pure Gaussian or linear is rather the exception than the rule!!



MINIMAX PROBLEM

YAN LIU

1. REFERENCE
Hosoya (1978), AP

2. NOTATIONS

1. Dy the class of all probability distribution functions

2. D1 C Dy the class of ... absolutely continuous w.r.t. the Lebesgue measure
3. fo(F)C'DO {HEDO;H:(1—€)F+€G,GEDO}

4. fl(F)CDO {HEDo;H:(l—E)F+6G,GED1}

5. En(f) ={we (—mnym>(1—-¢€f(w)}

6. Fon(f) ={we(—mnam<(1l—ef(w)}

7. L(H) the class of a linear predictor

8. Lo(f) = Nper, ) L£(H)

9. L1(f) = Nper () L(H)

10. A jumps at countable points with the corresponding saltuses AF'()\;)

3. CONCEPTS AND DEFINITIONS
3.1. Contrast function.

W) = (1 — e)f(w) w € Fm(f)
fm( ) {m(f) w € Em(f)

4. RESULTS

Theorem 4.1. There exists an optimal predictor ¢n, € L1 for the spectral density fn, such
that

max_ V(¢m, H) = 27 exp { % /7r log fim(w)dw } .

HeFi(F) o

Proposition 4.2.

1 ™
V(gm, H) = mi Vg, H) =2 — | log fm(w)dw .
B (¢m, H) poin (9. H) 7Texp{27r /_ ) 0g fm(w) W}

Date: December 16, 2014.



FOR NON-STANDARD RANK TESTS

GEN RYU
REFERENCE
e Janssen and Mason[1990]
Non-Standard Rank Tests
1. PREFACE

In the models with the standard regularity assumptions, the rank tests is efficient and
powerful, since the rank statistics with the exact score of the approximate score is dis-
tributed as normal distribution, and if the logarithm of ratio of the densities of null hy-
potheses and alternative hypotheses is distributed as normal distribution, by Cramer de-
vice, we can see that the rank statisticss are efficient and the distribution of the statistics
is normal under both hypotheses from Le Cam’s third lemma.

It has been well-known since Hajek and Sidak that rank tests work well under standard
regularity conditions. These are assumptions concerning the differentiability of the under-
lying parametric model. L'-differentiability of the densities is needed to derive locally most
powerful rank tests at a finite sample size, whereas, the now famous L2-differentiability of
the square root of the densities is required to prove the asymptotic efficiency of rank tests
under certain parametric alternatives.

note. Weibull location models with shape parameter a < 1 are excluded from the class.

In this book, the methodology to construct rank tests for models where the standard
regularity assumptions do not hold.

note2. The treatable non-standard models where the L2-differentiability assumption is
violated can be divided into two classes:

(1) the Fisher information ”just” fails to be finite, almost regular models
(2) non-regular or irregular models.

1.1. Simple Linear Rank Statistics. Here the simple linear rank statistic

Date: June 15, 2012.
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with wights given by
an(i) = E[(=f(FT U))/f(FHU)], i=1,2,...,N.

1.2. Efficiency. Efficiency means that the test reaches asymptotically the same power
under the local alternatives as the corresponding Neyman-Pearson tests.

1.3. Quick consistency. Quick consistency means that the test has the optimal rate of
convergence as measured in terms of local alternatives. More precisely, consider simple
alternatives
On = 0F 1 (1/n), 6> 0,
and let ¥y denote the Neyman-Pearson test for {0} against {#y} at sample size N.
For level « tests and sufficiently small 6 > 0

1> z\;gnooEeN‘llN > o
and

1 lim Ey, P .
>Ng>noo On N>«

Theorem 1.1.

e The score rank test is asymptotically efficient for a = 1.
e The score rank test is quickly consistent for 0 < a < 1.
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REFERENCE

(1) [article] H. Ogata(2010)

Empirical Likelihood Estimation for a class of Stable Processes
(2) [book] M. Taniguchi and Y. Kakizawa(2000)

Asymptotic Theory of Statistical Inference for Time Series

1. MA MODEL WITH STABLE INNOVATIONS

o0
(1.1) Xe=> ¢jeZij, t€L, E€ZCRY

j=0
Here, the parameters is denoted by 8 = (o, 7, &)’ € © € R?*4,

2. DEFINITIONS
2.1. A summary for mixing condition. [Taniguchi & Kakizawa]
2.1.1. Uniform Mixing Condition.
Definition 2.1. The process {Xy;t € Z} is said to satisfy a uniform mizing condition if
P(AnB)—- P(A)P(B
wp | IPAND) = PP

=¢(r) =0 asT — 0.
AEFt , BEFSS, P(A)

2.1.2. Strong Mizing Condition.

Definition 2.2. {Xy;t € Z} is said to satisfy a strong mixing condition if there exist a
positive function g satisfying g(n) — 0 as n — 0o so that

|P(ANB) — P(A)P(B)|<g(r—q), AeF',, BeF~,
where notation follows F1 = o{Xq, Xq-1...} and F° = o{X,, Xr41...}.
2.1.3. Mixing.
Definition 2.3. {Xy;t € Z} is said to be mizing if
lim P(ANT™"B) = P(A)P(B) A,BeF.

Date: May 21, 2012.
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2.1.4. Ergodicity.

Definition 2.4. The process {Xy;t € Z} is said to be ergodic if for all A € A, either
P(A)=0or P(A) =1.

note. The relation of logic above is (2.1) = (2.2) = (2.3) = (2.4).

Part 1. Empirical likelihood estimation
3. ASSUMPTIONS AND THEIR INTERPRETATION
3.1. Assumptions. [Ogata(2010)]

Assumption 3.1. The coefficient ¢;’s satisfies the following conditions.
(Al) Yo = 1.
[o.¢]
(A2) 20951 < oo.
(A3) {Xi}iez satisfies the uniform mixing condition and that the mizing coefficient ¢(T)
satisfies 3. {p(T)}1/? < o0.

3.2. Interpretation of assumptions.

(A1) It means that the model is standardized by this assumption.

(A2) The assumption guarantees that a.s. convergence of series (?77). See Embrechts et
al.(1997, Sec 7.2) for details.

(A3) This assumption is used for the CLT in the proof of Lemma 1 in section 6.

4. THE IMPORTANT EQUATION AND ITS TRANSFORMATION

4.1. The theoretical characteristic function.

oF)



SUMMARY ON THE SPECTRAL ANALYSIS OF TIME SERIES
MODELS

GEN RYU

Consider the linear process

X(t) =) AUt —j), tez,
7=0

where the innovations U(j) are i.i.d. s-vector random variables. The process {X (¢)} has
spectral density matrix which is expressed as
g(w) = 2n) k(wk(w)*, —-7T<w<m,
where k(w) = > 72 A(j )e™J. The periodogram of the process is defined as
Ir(w) = 27T) Yy (w)dr(w)*, —7m<w<m,
where dp(w) = 1 X (t)e ™.
1. WHITTLE LIKELIHOOD

The multivariate Whittle likelihood is given by

W(6) = / "o det fo(w) + tr{ fo(w) " Ir(w)} dw.

-7

The spectral form of a general linear process is given by
*

fow) = [ D B;(0)e? | = Y Bj(0)e™ | |
j=0 j=0

where the B;(#) are s X s matrices, By(f) is an s x s identity matrix and ¥ is an s x s
symmetric matrix. Assuming that the parameter § does not depend on 3, which corre-
sponds to the covariance matrix of the innovation, while the B; depend on 6, we call ¢
”innovation-free”.

Let 6y be the value defined by

™

(1) 55 | Hogdet o) + xlfol) o)} as| =0,

which is called the pseudo-true value of 6. Here, ) means the point minimizing the D( fy, g)
under natural conditions.

Date: June 11, 2012.
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REFERENCE

(1) [book] L.Breiman(1968)
Probability

(2) [book] P.Billingsley(1968)
Convergence of Probability Measures

Part 1. The relation between characteristic function and the distribution
1. DEFINITIONS

1.1. Definition for all probability measures.

Definition 1.1. Let D denote the set of all distribution functions. A subset L C D will be
said to be mass-preserving if for any € > 0, there is a finite interval I such that

F(I°)<e forall FeD.
In general, we have an extension of the definition as follows:

Definition 1.2. A family I1 of probability measures on the general metric space S is said
to be tight if for every positive € there exists a compact set K such that P(K) > 1 — € for
all P in 11

This definition introduces another definition, which is a little weaker than tight.

Definition 1.3. A family II on (S,S) is relatively compact if every sequence of elements
of Il contains a weakly convergent subsequence; that is, if for every sequence {P,} in II
there exist a subsequence {P,/} and a probability measure Q) which defined on (S,S) such

that Py % Q.
1.2. infinitely divisible distribution.

Definition 1.4. X will be said to have an infinitely divisible distribution if for every n,
there are independent and identically distributed random variables Xl("), Xén), X,(Ln) such
that £L(X) = £(X\™ + x{ 4+ -+ x[).

Date: May 31, 2012.
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2. THEOREMS
2.1. Theorems concerning the family of probability measures.
Theorem 2.1 (Billingsley(1968) Thm 6.1). If II is tight, then it is relatively compact.

Theorem 2.2 (Billigsley(1968) Thm 6.2). Suppose S is separable and complete. If I is
relatively compact, then it is tight.

Corollary 2.3 (Breiman(1968) Cor 8.11). If F, 4 F, F € D, then {F,} is mass-
preserving.
3. DEFINITION 2

Definition 3.1. A set £ of bounded continuous functions on R will be called D-separating
if for any F,G € D,

/de:/fdG, Vfe&
implies F' = G.

4. THE RESULT FROM DEFINITION

Proposition 4.1 (Breiman Prop 8.15). Let £ be D-separating, and {F,,} mass-preserving.
Then there exists an F € D such that F, 4 g if and only if

lim/denea:ists, forall f € &.

If this holds, then lim,, [ fdF,, = [ fdF, for all f € €.

Corollary 4.2 (Breiman Cor 8.16). Let £ be D-separating and {F,} mass-preserving. If
F € D is such that [ fdF, — [ fdF, for all f € £, then F), LNy

Proposition 4.3 (Breiman Prop 8.17). &, which is the family of trapezoid functions is
D-separating.

Proposition 4.4 (Breiman Prop 8.18). Let £ be a class of continuous bounded functions
on R with the property that for any fo € &, there exist f,, € € such that sup | fn(z)] < M,
for all n, and lim,, f,(z) = fo(x) for every x € R. Then & is D-separating.

5. THE JUSTIFICATION OF CHARACTERISTIC FUNCTIONS
Theorem 5.1 (Breiman thm 8.28-The continuity theorem). If F), are distribution func-
tions with characteristic functions f,(u) such that
(1) limy, f,(u) exists for every u,
(2) lim, fr(u) = h(u) is continuous at u =0,
then there is a distribution function F such that F, 4 F and h(u) is the characteristic
function of F.
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The theorem holds because the class of characteristic functions makes up the property
of D-separating, and the continuity at « = 0 implies mass-preserving.

Theorem 5.2 (Breiman 8.24). The set of all complex exponentials {e™*}, u € R is D-
separating.

Proposition 5.3 (Breiman 8.29). There exists a constant o, 0 < o < 00, such that for
any distribution F with characteristic function f, and any u > 0,

F ({—i i]) < Z‘/Ouu — Ref(v))dv.

Part 2. The Infinitely divisible laws and Stable distributions
6. DEFINITIONS

Definition 6.1. X will be said to have an infinitely divisible distribution if for every n,

there are independent and identically distributed random wvariables Xl(n), e XT(L") such
that
LX) =X 4. 4 xM).

Let
Sn e Xl(n) + . e _i'_X"sn),
then we have following proposition.

Proposition 6.2 (Breiman 9.10). If S, N X, then an) 4 0.

6.1. Some useful equations. Let f(u) be the characteristic function of X. Therefore,

since L£(X) = K(XYL) +-e- Xy(Ln)), there is a characteristic function f,(u) such that f(u) =
[ fn(u)]™ and from the proposition fy,(u) — 1 uniformly in u. Then,

log f(u) = nlog[1 = (1 = fn(u))] = n(fn(u) = 1)(1 + €n(u)),

where € — 0 uniformly in u. Denote by F}, the distribution function of an), then
log f(u) = (1 + en (1)) /(em  1)ndF,.

Theorem 6.3 (Breiman thm 9.17). X has infinitely divisible distribution if and only if its
characteristic function f(u) is given by

2,2 , - 1+ 22
1ogf(u)=iﬁu—"2“ +/<6M—1_ e ”V(da:),>

where v is a finite measure that assigns zero mass to the origin.

2

note. The time honored custom is to take T

for the change of measure.

note2. The order of the change of measures is

F, — pn, — v, (the change has using the term above) — v.
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7. STABLE LAWS

Definition 7.1. A random variable X is said to have stable law if for every integer k > 0,
and X1 ..., Xy independent with the same distribution as X, there are constants ap > 0,
br such that

Theorem 7.2 (Breiman 9.27). Let X have a stable law. Then either X has a normal
distribution or there is a number o, 0 < o < 2, called the exponent of the law and constants
mq >0, mo >0, 8 such that

. Ry ux dx 0 » iux dx
lOg fX(U) = Zu/B+m1/0 <€“‘L'I —1- 1—|—$2> W“‘mQ /;OO (e’bux —1-— 1_'_.%.2> W

note. An equation used in Hosoya(1978) is very difficult to understand, so we give an
explanation here. Define a measure pu:

1'2
n(B) = [ (),

Then p is o-finite, u[—a, a]® < oo, for any a > 0, f[_a . x?dp < 0o, and

. . LUALT
— muapT 1 o d
o(agu) zakﬁu—i-/(e 1+x2>u( x)

. ; TUQELT
= ddpu+ e — ] — ———— dx),
F / ( 1+ aza,@) u(dr)

T x
dk:ak,8+(lk/ |:]_—|—aigj2 — 1—|—$2:|H(d$)

Then define a change of variable measure uy by

pi(B) = p(z; apz € B),

olapu) = idgu +/ <ei“w -1 e > pi(dzx).

1422

where

to get

Theorem 7.3 (Breiman 9.32). f(u) = e?") is the characteristic function of a stable law
of exponent a, 0 < a < 1, and 1 < a < 2 if and only if it has the form
o(u) = iuc — du|* <1 + iﬁﬁ tan ;Ta> ,
where ¢ is real, d is real and positive, and 6 real such that |0] < 1. For a =1, the form of
the characteristic function is given by
2
o(u) =iduc —dul [ 1+ 0= log |ul | ,
Jul 7

with ¢, d, 6 as above.
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1. REFERENCE

Mupphy and van der Vaart (2000), JASA.

2. NOTATIONS

2.1. Notations.

0 a low-dimensional parameter of interest
i a higher-dimensional nuisance parameter
n)  the parameter

0,7n) the full likelihood

pl,,(#) the profile likelihood for 6

lo the efficient score function for 6

Nt D=
—
S
—~

Iy the efficient Fisher information matrix

3. FUNDAMENTAL SETTING

(i) the profile likelihood for 0

pl,, () = sup ln(6, ).
7
(ii) For any random sequence 6,, —p 6o,

- - L 1 - .
log pl,, () = log Pl (60) + (O — 00)" > lo(Xi) = 570 — 00)" To (0 — 60)
=1

+0p,, 0 (Vll0n — 00l + )% (3.1)[eq:5.1]

4. MAIN RESULTS

Corollary 4.1. If (3.1) holds, Iy is invertible, and 6, is consistent, then they hold that

. 1 . - -
Vn(0n —0) = N > I Mo(Xa) + opy, (D). (4.1) {7}
i=1
~ . 1 - e . ~
log pln( n) = log pln(gn) - §n(an - Qn)TIO(Qn - en) + OPQOJ,O (\/ﬁ”en - 90” + 1)2'

(4.2) {7}

1
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In particular, the MLE is asymptotically normal with mean 0 and covariance matrix the
inverse of I.

Corollary 4.2. If (3.1) holds, I, is invertible, and 0,, is consistent, then under the null
hypothesis Hy : 6 = 6y, the sequence 2log(pl,(6,)/pl,(6o)) is asymptotically chi-squared
distributed with d degrees of freedom.

5. QUESTION
(1) What is d?
6. FURTHER READING
7. STRUCTURE

(1) Introduction

(2) Least favorable submodels
(3) Main result

(4) Examples

(5) Disscussion
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YAN LIU

1. REFERENCE
Li (2008), JASA.
2. NOTATIONS

2.1. Notations.

Lt deterministic sequence
€t random process

Fi(x) marginal distribution
fi(x) density function

Fis(u,v) bivariate distribution
res(u,v)  below

Wi below

d, ¢, N9 positive numbers

Wo, Qo  positive definite matrixes

© 0N W

2.2. Fundamental Setting.
(i) model
Yt = it + €&

(i) regression coefficient
n
- ) T
Bin = arg min ;Iyt -z,
(iii) difference between dependence and independence
rts(u7 U) == Fts(ua ’U) - Ft(u)Fs(v>

(iv) mean difference

T
wjr = xjB0 — it

Date: September 16, 2014.
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2.3. Assumptions.

(A1) The derivative of G¢(u) with respect to u, denoted as g(u) := G¢(u), exists for all u
and satisfies g;(w;¢) = O(1) uniformly.

(A2) Gi(u+wjr) — Gr(wji) = gr(wje)u + O(ud™!) uniformly for [u| < ug, where d > 0 and
ug > 0 are some constants.

(A3) Ajp, = nt >y gt(wjt)mjt:cﬁ > Ag for all j and for large n, where Ag is a positive
definite matrix.

(A4) Cign =030 S0 ris(wjp, ws)xjpxt, > Cp for all j, k, and for large n, where
Cy is a positive definite matrix and

Tis(u, v) := Gis(u, v) — Gi(u)Gg(v).

(A5) {e:} is an m-dependence process or a linear process of the form ¢ := Y ;2 dresy,
where {e;} is an i.i.d. random sequence with E|e;| < oo and {¢;} is an absolutely
summable deterministic sequence such that }-; ., & = o(n~!) as n — oo for some
constant r € [0,1/4).

3. MAIN RESULTS
Lemma 3.1 (Quantile Regression Lemma). Under assumptions above,

(3.1) ViveelBin — B, 5 N (),

as n — 0o. Furthermore,
n n

(32) Y el @lBi) = 3 pal¥i - @hB) — SChAL G+ op(1),
t=1 t=1

and the Cjn are asymptotically jointly normal such that

(3.3) vee[Giuly 5 N (veelhjnl, [Cinlhey)-

4. FURTHER SETTING

4.1. Notations.
(1) model
Yt = €&
(2) a new regression coefficient

.: : T
Bu(w) := arg min ;!yt z{ ()8
(3) a new periodogram
1 ~
Ln(w) = [ Bn(w)|I*

(4) distribution F'(z)
(a) median
F(0) =1/2
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(b) density f(x)
f(0) >0
(5)

(6)

Yr = P(€t€t+7' < O)

S(w) = i (1 = 2v;) cos(wT)
(7) coef. of Gaussian T
o 1
T ap©)

(8) coef. of chi squared
S = diag{S(w1), S(w1),...,S(wq), S(wg)}

(9) chi squared
Zj ~idd. x*(2).

4.2. Assumptions.
Z?—O:OH - 2’77" < o0

)
(B2)
(B3) f(x) is continuously differentiable in a neighborhood of z = 0
(B4) matrix condition

- 1
Dijp =n"" th(wj)xt(wk) = 5<5j,kl +O(1).
t=1

5. MAIN RESULTS

nY2vecfn,(w;) ~ N(0,2n°S),
1
Ln(wy) ~ 5m°S(w;)Z;

6. WORDS
1. commence " 5
2. dwell W35
3. minutiae I IV HWN
4. predator-prey fHEH RS
5. sonar V=

7. FURTHER READING

7.1. robustness. Robust statistics, Maronna, Martin and Yohai
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REFERENCE

e cargo[1966]
some extension of the integral test

Part 1. Cargo[1966]
1. THEOREMS

Theorem 1.1. If f is a real-valued function defined on [0,00) such that sup{ V]'f =
1,2,...} < oo, then Y32, f(k) and [° f(t)dt converge or diverge together.

note. Of course, the spectral density and periodogram are real-valued functions defined on
[0,00). It means that m we defined in the paper is also real-valued function. What does
V mean? Let me check!

Theorem 1.2. Let f be a nonnegative function defined on [0,00). Then > ;- f(k) and
Jo° f(t)dt converge or diverge together provided

sup{ Vg'f:n=1,2,...} < o0,
where V' f denotes the total variation of f on [0,n]
note. What is the sufficient condition for finite total variation? Or spectral density already

satisfies?

2. IMPORTANT EQUATION

Corollary 2.1 (Pélya p.37). If a function g ha finite total variation V on [0,1], then

! I~ k| _V
dr — — )| < —.
R WO
k=1
Calculation. If f is a function satisfying condition (5),

sup{Vy'f:n=1,2,...} < o0,

Date: July 11, 2012.
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then we have

n n 1 n
fwydt—=» fk) = n | f(nx)de—) f(k)
Jy st = n [ ste=3

_ n[[fgxxMM—-;ézgn<i>],

where g, () is, by definition, equal to f(nx) for all z in [0,1].

Theorem 2.2 (Hardy(1910)). Let f be a nonnegative function which is defined and has
a continuous derivative on [0,00]. Then > ;7 f(k) and [J° f(t)dt converge or diverge
together provided

Aﬂﬂmﬁ<m
2.1. others. (3)

Zsup{]f(k) —f)]:k—1<t<k}<oo.
k=1

n

| f(k)—/onf(t)dt\svonf n=12,....

k=1

| rwa=3 s,
0 k=1

Part 2. something concerning stable
3. FOR STABLE
Corollary 3.1 (Can et al.(2010) Cor 3.3). Let a € (0,2) and
F{F € 20,7] s a(f) = (ar(f), aa(f), - ,) € % Tog1},
where a(f) is defined by

Then we have
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Proposition 3.2 (K&M(1996) Prop 3.5). Let (X;)icz be a linear process with coefficients
() jen satisfying D72 17]1%;]° < oo and suppse that a € (0,2). PFurthermore, assume
that f is defined on [—m, 7| such that g(-) = f(-)|o(-)|? is continuous and

/ g(A\) cos(tA) dA

oo

D

t=1
for some x € [—m,w| and some 0 < p < . Then

(,Yi,X’ T, xn /

—Tr

I
< o0

T

a \ e
|)

(Lnx N =[$NPTa) fF(N)dA) = | Yov?, Yo, 221 (Z
t=1

/m g(A) cos(tA) dA

with Yy independent of (Zy)iez,.
Lemma 3.3 (Can&Mikosch(2010) Lem 3.1). For every m > 1,

n’Yn,Z(O) nVn,Z(h)
n2/e 7 (nlogn)t/e’

:1,...,m> = (Yo, Y1,..., V).

what is important here is that the self-normalized periodogram is employed in the func-
tional form, that is

Jox(f) = /0 " Lux (V) F (V) dA,

where [ is any function for appropriate classes of real-valued functions f € F on [0, ].
Let Y(a) and Y (a) be defined as

o
Y(a)=> aY,
k=1

¥(a) = Y(a)/Yo.

Before defining the class F, we will have a proper class for a,

[e.9]
1
acl®logl=4qa=(ay,az,...) Gla:2|ak|alog+— <00 .
k=1 ]
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YAN LIU

1. REFERENCE
Kiinsch (1984), AS.

2. NOTATIONS

2.1. Notations.
1. h(x) a known probability density on R
2. o2 variance of Uj;
3. p(z,n)™ m-dimensional marginal distribution of stationary processes
4. M™ the set of p(z,n)™
5.0 € © CR? (¢g<p+2) unknown parameter
6. T a functional M™ — © (or restrict T' to a certain subset of M)
7. v =sup, |[ICr(x,0)| gross error sensitivity
8. 0= (01,62)
9. 91—0’&11(192 (’I’],ﬁl,...,pr)
10. K = (K1, K2)
11 ¥ = (1, )

2.2. Fundamental Setting.
(i) AR(p) process

Zﬁk k=) + U, iid U

Using z} = x; — 1, Kk 18 deﬁned by
LL’
H(ml,...,$p+1;0) 210 h( Z/Bk p+1— k‘)

00
Furthermore, let u denote
u =, Z BrTy i1k
(ii) m-dimensional marginal distributions

Date: August 24, 2014.
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(a) Define x; = x;_p, if i > kn for k € N;
(b) m-dimensional marginal distributions

n
p(xa n)m - n_l Z 5('7;17 s 7xi+m—1)7

where 0(x;, ..., %iym—1) is the point mass at z € R™.
(iii) M-estimator defined by
n—m-+1

> (g Tipme1i0n) =0,

(iv) Choice of the functional T" : for T'(uy*) = 6,

On(21,...,20) =T (p(x,n)™).
(v) Any version of the influence function IC7(z, 6)

/ICT(x,G),ug(d$m|xm1, c L Tym—p) =0,

(vi) Asymptotical variance-covariance matrix
C(T,0) = / ICr (2, 0)ICr(x, )T 1y (dx).

Lemma 2.1. If {X;}icz is stationary ergodic process, then
plz,n)™ = ™ asn — oo.

2.3. Hampel’s optimality problem. Minimize the trace of the asymptotic covariance
matrix C(T, ) among all estimators of (iv) which have an influence function and for which

7" = sup[lCr(z,0)| < c(6).

2.4. Huber function. c
)
2]

3. FUNDAMENTAL THEOREMS

Theorem 3. 1 (Kiinsch (1984), Theorem 1.1). A functional L : M™ — R is of the form

H.(z) = xmin(1,

= [t(z)v™(dx) with t bounded and continuous zjj”L 18 aﬁine and weakly continuous.
Theorem 3.2 (Kiinsch (1984), Theorem 1.2). [t(z) =0 for all v € M™ iff
tz1, .y xm) = g(x1, ..oy Tm—1) — g(x2, -+, Ty) with an arbztmry g.

Theorem 3.3 (Kiinsch (1984), Theorem 1.3). Let u denote the distribution of an AR (p)-
process. IfR™ — R, m > p, is continuous, sup|f(z)|/(1+|z|) < oo and [ f(x)u™(dx) =0,
then there exists a continuous function g : R™~! — R with sup|g(x)|/(1 + |z|) < 0o and

/f T1y-.-, T +g($1,...,xm_1) —9($27'” 7xm)u(dwm’xm—17”' 7$m—p) =0
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forall x1,...,xm_1. g is unique up to an additive constant.

4. OPTIMAL ROBUST ESTIMATORS

Theorem 4.1. Suppose o is known and h(x) = h(—z). If the bound c(0) is such that
[ Heo(Al0)x(a,0))(a, )7 () = 1

has a solution A(6) for all 6, then the solution of Hampel’s optimal problem is given by

{m =p+1,
¥(z,0) = Heg) (A(0)k(z,0)).

Theorem 4.2. If Yy(z1,...,2p41;0) = x(%) with x(-) even and v is one of the opti-
mal solutions of Hampel’s problem, then & is asymptotically independent of 0y and the
asymptotic covariance for 0o is the same as for known o.

5. WORDS

6. FURTHER READING

6.1. robustness. Robust statistics, Maronna, Martin and Yohai



SUMMARY=LINEAR SERIAL RANK TESTS FOR RANDOMNESS
AGAINST ARMA ALTERNATIVES

GEN RYU

Let ay,...,ap,,b1,...,by, be an arbitrary (p; + p2)—tuple of real numbers, and consider
the sequence

p1 p2
Xt—n_l/QZaiXt_i:et—i—n_l/QZbiet_i, tEZ, n:1,2,...
=1 =1

of stochastic difference equations. For n sufficiently large, all the roots of the characteristic
equation

p1
2P 2 E a;Z2P'7' =0, zeC
=1

lie inside the unit-circle.
The hypothesis is denoted by Hy:

The alternative is denoted by Hi:

t+p2—1

n P1 t—1 P1
(@) = / H flag—n~'? Z a;Tp—i + Z Gu(@p—u —n 2 Z iTt—y—i) + Z Jut—u)
t=1 i=1 u=1 i=1 u=t

dGap(T—pi+1,- -, 20) fle—pot1) - .. f(eo) de—py41 ... deo.

Furthermore, consider the likelihood ratio

HE
In(®) =144 if 11 () = 10 () = 0
00 if IL(x) > 1%(x) = 0.

Date: February 4, 2013.
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1. DEFINITIONS

1.1. linear serial rank statistics in the paper.

b Z W(RU R RM)

—p+1
where a,(---) is some given score function and Rgn) is the rank of the observation made
at time ¢ in an observed series of length n.

Lemma 1.1. The variance of (n —p)S, = > 1, an(R,En), R,@l, . ,Rgﬁ)p) is

(L.1) D*((n—p)Sa) =

p
(n—p)Var(a(Ryy1,..., R1)) +2) _(n—p—1i)Cov(a(Rys1tis - -, Riyi),a(Rpy1,..., Ry))
=1
+[(n=3p)(n —3p—1) + p(2n — 5p — 1) |Cov(a(Rap+2, - . -, Rp+2),a(Rpt1, . .., R1)).

Corollary 1.2.
(1.2) D*((n—p)Sn) < (n—p)(2p + 1)Var(a(Rp41,. .., R1))
+ nCov(a(Rng, ey Rp+2), (I(Rp+1, ey Rl))
Lemma 1.3.
(13) E[G(Rp+1, ceey Rl)

]
= BlaRy o R s
p+1

(n—p—1)(n 2 n—2p—1+1
B > 5

n _
( p) p+2<j1# 51 <2p+2 1<k <ko<---<k;<p+1
Ela(Rpy1,- - Ry 1 Rj Ry, 1, -+, Ry 41 Ry Riey 1,5 -+, R1)|Rapa, - -, Rpyo]

Lemma 1.4.
TL’COV(G(Rp+1, SR} R1)> a(R2p+2> cee 7RP+2))’ < KE[GQ(RIH-D SRR Rl)]

1.2. score functions and score-generating function. The authors assume that the
score functions ay (- - - ) are such that there exists a function J = J(vp41,vp, ..., v1), defined
over [0,1]P*1, such that

O</ J2(vp+1,--- ,01) dUpg1 -+ - dvp < 00
[0,1]p+1

and
lim E[(J(Upsr, -, U1) — an(RC, -, RY)?HM] = 0

n—oo
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This assumption is satisfied most of the time when a,, is of the form

i1 i2 Ip+1
J : e _
(n—i—l n—+1 n—l—l)

an(ilaZé, e 7Z.p+1)

1.3. a discrete-time stationary white noise. a sequence {e;t € Z} of independent
and identically distributed random variables with means Ele;] =0, t € Z.

1.4. finite Fisher’s information related to the location parameter. f(x) is abso-
lutely continuous on finite intervals, and

0<I(f) = /_Z (J;/g)))Zf(x) dz < .

1.5. distribution function.

F~'(u) =inf{z|F(z) > u}, 0<u<l.

Put
o FFT ()
O(FH(u) =— FF1(0)’ 0<u<l.
This function can also be written a.e. as
=)
¢(x) - f(.l') ’ HAIS R

There are many properties like:
1
| o)z =o
2)
| #@i iz =10

3)

(4)
[ ¢ (2) f(x) dz = I(f).

(5) o?I(f) is independent of the scale transformation.
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1.6. the Green’s function. g, associated with the operator C(L) =1+ >F_ ¢, L (the
¢;’s are real and ¢, # 0) is the value in t = u of ¢y of the homogeneous difference equation

p
(A Zci¢t—i =0, tez,

i=1
taking on initial values ¥ = 1,91 =--- =_,,11 = 0.

Lemma 1.5.
w

Z lgu] < Z (pbyn™ V2% Yw > v > 0.
u=v u=[(v—1)/p]+1

Corollary 1.6. For n > 4(pby)?,

(e}
Z < 2(pbyn V2V = o(n V%) Yo > 0.
u=pv+1
1.7. the distribution function of p; successive values of {X;}. Gup(ty1,..., Teqp,)-

1.8. ARE—asymptotic relative efficiency. (TRT pp.317) Assume that the asymptoti-
cally most powerful test for H against ¢ may be based on a statistic Sy which is asymptoti-
cally normal (0, 02) under Hy and which is asymptotically normal (10, o2) under q. Further,
consider another test based on a statistic S, which is asymptotically normal (0, %) under
Hy, and which is asymptotically normal (x.0?) under ¢. Then the number

2
( 0)
e =
Hoo

will be called the asymptotic efficiency of the S-test. It is also called the Pitman asymptotic
efficiency.

For the definition in the paper, the efficiency is extended to any two linear serial rank
statistics. A test statistic S,, such that e(S’n, Sp) > 1 for any linear serial rank statistic S,
will be asymptotically the most efficient statistic (in Pitman’s sense) within the class of
linear serial rank statistics.

1.9. run statistic.

o 1 if (2i—n—1)(2ia—n—-1)<0
an(i1,12) = 0 if (21 —n—1)(2is—n—1)>0.

1.10. turning point statistic.
1 if 41 >d0 <3
an(i1,i9,43) = ¢ 1 if 41 <iig <3
0 elsewhere.
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2. THE MAIN POINTS OF THE PAPER

(1) A class of linear serial rank statistics is introduced to test white noise against
alternatives of ARMA serial dependence.

(2) Using LeCam’s notion of contiguity, the asymptotic normality of the proposed
statistics is established.

(3) An explicit formulation of the asymptotically most efficient score generating func-
tions is provided.

(4) The asymptotic relative efficiency of the proposed procedures is studied with respect
to their normal theory counterparts based on sample autocorrelations.

COFXDT e 2 AL, nsamples ~ (0,7) ZFIZ L72RF, 2D n samples [$HED 12 HD
FRPRERRIC K O . WA IERL AR ITHE L Z 9 7203, FERIEBI M- 2 AT, I
5 DIEARDSL D>, ARMA D% FiDHEEIEEAD D\ T rank statistics 1Z X % FdfiE 23
HETHLILEEZRLIHTH S,

3. THE PROCESS OF THE PAPER

(1) Introduction

(2) Notation and basic assumption

(3) Asymptotic distribution of likelihood ratios (pp.1160)

(4) Asymptotic distribution of linear serial rank statistics (pp.1162)

(5) Asymptotic efficiency of linear serial rank statistics (pp.1166)

(6) Examples and the table (pp.1172)

(7) Appendix 1-6 (pp.1173/pp.1173/pp.1176 /pp.1178/pp.1179/pp.1180)
(8) References (pp.1181)

4. BASIC ASSUMPTIONS AND THEOREMS

4.1. assumptions.
Let {e;;t € Z} be a discrete-time stationary white noise. Assume that it has a density
f(z), and that the following conditions are satisfied:

(1) ¢ has finite moments up to the third order; denote its variance by 2.
(2) f(x) is a.e. derivative, and its derivative f’(z) satisfies

| r@lds <o

—00

(3) f(z) has finite Fisher’s information I(f).
(4) Assume ¢(x) is a.e. derivative, and its derivative ¢'(x) satisfies a Lipschitz condition

¢'(x) = ¢'(Y)| < Alz —y|, ae.

4.2. asymptotic distribution of likelihood ratios. First, the authors established the
contiguity between the hypotheses:
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Proposition 4.1. Under Hy,

d2
log Ln(X1,., Xn) = Ly(X1,..., Xn) = = + 0y,

where

L£Y(X)=n"1? Z B(X;) ZdXt ;

t=p+1

ai+b; 1 <i<min(pi,p2)
di = @i p2<i<p if p2 <p1
bi p1 <i<py if p1 < p2
p=max(pi,p2) and d* =37 dio*I(f).
Moreover, L% 4 N(0,d?).
The form of this asymptotic distribution shows that, for n sufficiently large, there will

be little difference, from a statistical point of view, between AR, MA and ARMA models!!

4.3. asymptotic distribution of linear serial rank statistics. In the paper, the au-
thors proposed the linear serial rank statistics for the models as follows:

7Zan t1>-' Rgn))

n 1 . .
ma = BSWHY = se ey 2 el i)
1<iz#-Fipt1<n

The authors established the asymptotic equivalence of (n — p)'/2(S,, —m,) with S, — &,
where

Su(X) = (n—p)~ Y2 Z J(F(X1), F(X¢-1), -, F(Xi—p))
t=p+1

. (n—p'?
5“X5—nm1,umphﬁﬁggwénﬂFuaxuwFﬁﬁﬂn

It is also established that n~1/ 2(S, — &) and n=1/ 2£Y are asymptotically equivalent to
U-statistics.

Proposition 4.2. Under Hy,

(o) 58 (v teorn) (52 aes sdobein))
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where
(41) V2= /[0 T e o) Py
’ p
+ 22/[0 R T (Vpgt1, - s 01) I (Vpgiggy o s V145)dVL - dUpp14
j=1 ’
and
p—1i
Ci = T Wpr1s -5 01) Y G(F (0pp1—3)) F~H(0ppa—j—i)dor - - - dvpy
[071]p+1 =0

Proposition 4.3. Under Hi,

P
d
Vi(Sn —mn) S N diCi, V).

i=1
4.4. asymptotic efficiency of linear serial rank statistics.
Proposition 4.4. An asymptotically optimal linear serial rank test for Hy against Hy is
provided by any statistic S with score-generating function (up to additive and multiplicative
constants) given by

p— 7

P
J4(v RN ) (v F Y vyr1—i4).
(p-i—l ;p—i—l—z :0¢ p+1— J)) (p-i—ly i)

.

Under Hp(h € RP),
p
nV2(8¢ —mi) S N (O hidio®1(£), V),
=1

d;o*1(f).

where Vd2: l 1 ds

This optimality result relies on the following lemma.

Lemma 4.5. Let S,, be a linear rank statistic with score-generating function J*(vp41,- - ,v1),
and let
Tiopetse o) = @21(1) ! Z e Z SE (1) F (1)

Denote by SO a linear serial rank statistic associated with J§. Then e(Sy,SY) <1 for any
alternative HY.

Proposition 4.6. Under Hy,
\/ﬁ’l“l 0 dq
: LNYYs : : I :
NS 0 d,
log Ly, —23P  d2o?I(f) di ... d, > dicI(f)
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Corollary 4.7. Under Hy,

P P
nt/? Z apry 5 N(Z a;d;, Z o?)
k=1 i=1 i=1
Corollary 4.8. The asymptotically most efficient (in Pitman’s sense) linear combination
of the ri’s against Hq is > p_y diTs-

Proposition 4.9. Denote by e the ARE of the asymptotically optimal serial rank statistic
with respect to the asymptotically optimal combination of autocorrelations Zi:l dgri, then
we obtain

e = o?I(f).
5. THE HISTORY OF NONPARAMETRIC METHODS

(1) Dufour et al. (1982) and

(2) Hotelling and Pabst (1936) — run test / turning point test

(3) Wald and Wolfowitz (1943) — Spearman’s autocorrelation coefficient

(4) Jogdeo (1968) — not adapted to time-seiries situations

(5) Knoke (1977) — the power of serial rank procedures / ARE / Spearman’s first-order
autocorrelation coefficient / turning point statistic

(6) Gupta and Govindarajulu (1980) — locally most powerful rank statistic (particular
case)

(7) Aiyar (1981) — van der Waerden statistic (particular case)

(8) Bartels (1982) — von Neumann'’s test / more efficient than the run test / parametric
von Neumann test

(9) Bell et al. (1970) — a highly systematic and theoretically-based approach

(10) Dufour (1982) — sign / Wilcoxon / signed rank / van der Waerden tests

11) Govindarajulu and Dwass (1983) the same to the above

12) Govindarajulu (1983) An overall review of some of these procedures

6. WORDS

1) tractable #\>g v

2) viz. = that is, namely $7%b 5

3) scattered BXfEL TV> 5

4) piecemeal T LTOD, II5IX5D
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1. DEFINITIONS

1.1. discrete sequences of estimators. [Bickel(1982)] The discrete sequences of estima-

tors {f,,} satisfies that 0, is given by one of the vertices of {6 : 0 = n=Y/2(iy, ... ip1q),i; €
Z} nearest to 6.

Part 1. Local asymptotic normality for ARMA process
2. THEOREMS

Theorem 2.1 (LAN property for ARMA models). Let {h,,} C RPT? be a bounded sequence
and 0, = 0y +n~Y2h,. Under our assumptions (A1), (A2) and (A3), we have for

An(0) = jﬁ S Gle;(0) 20 — 1:00,0), &= —F'/2F,
j=1

the following two results:
1
tog[ dPog, /Aoy | — BT An(B0) + S WL T(F)T(B0)hn = 0,

in P, g,-probability, where I'(6y) is defined in Theorem 3.5 below (approzimation of the
log-likelihood ratio).

L(An(00)|Pngy) = N (0, I(f)T'(60)),
where "=" denotes weak convergence (asymptotic normality of the approzimating statistic).

Corollary 2.2. Under the same assumption as above {P, .} and {P,,} are contiguous
in the sense of Definition 2.1, Roussas (1972), page 7, and

'C(An(ao) - I(f)r(9o)hn|Pn,0") = N(O’ I(f)F(eo))

Date: May 15, 2012.
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3. THE SUFFICIENT CONDITIONS FOR LOCAL ASYMPTOTIC NORMALITY
The 4 theorems below guarantee that the sufficient conditions are fulfilled.
Theorem 3.1. For each 6y € O, the random functions ¢;(0o,-) are fliﬁerentiable m q.m.
[ Py, | uniformly in j > 1. That is, there are (p+q)-dimensional r.v.’s phi;(6o) = gb(e?)Z(jf
1;60,60) = gb(e?)ZO(j —1) [the g.m. derivative of ¢;(0o,0) with respect to 6 at Oy] such that
®j(00, 00 + Ah) — 1
A

uniformly on bounded sets of h € RPT4 and uniformly in j € N. Finally, gﬁj (60) is measur-
able with respect to Aj;.

— hT$;(00) — 0, in gm. [Py,] as A — 0

Theorem 3.2. For each 0y € © and each h € RPH9, the sequence {(hT $;(60))},7 € N, is
uniformly integrable with respect to Py, .

Theorem 3.3. For each 6y € © and j > 1 let the (p+ q) x (p+ q)-dimensional covariance
matriz I';(0y) be defined by

T;(00) = 4B, [ 6;(00) ()T (60) ] = I(f)Egy[ Z(j — 1;60,60)Z" (j — 1560, 60) |-

Then T (6p) — T(00)I(f), as j — oo, in any one of the standard norms in RPTY, and T'(6p)
is positive definite.

Theorem 3.4. (i) For each 6y € O, each h € RPYY and for the probability measure Py,,
the WLLN holds for the sequence {[hT¢;(00)]%,7 € N}. Also

(i)
R , :
- > {Ea [ (h"j(00))?|Aj-1] = [h"¢5(00) 1P} = 0, as n — oo,
j=1
in Py, -probability.

Part 2. Existence and construction of LAM estimates

Lemma 3.5. Under assumptions (A.1), (A.2), (A.3) we have for any sequence {Z,} of
estimates the following implication:

(2, — ) — L0

() An(bo) = op, (1)  ({Zn} is called O-regular)
implies that {Z,} is LAM.

4. ASSUMPTIONS AND THE INTERPRETATION OF IT
Assumption 4.1. There exists a sequence {0, } of estimators which satisfies

\/ﬁ(én — o) = OPeo (1).

This assumption holds for estimators for which the usual CLT is valid, i.e., for all the
standard estimators. (See Anderson(1971) Thm 5.5.7). Fuller(1976) sec 8.4.
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Theorem 4.2 (Existence of LAM estimators). Assume {0,} C © is discrete and \/n-
consistent for 0y € ©. Then 6, defined by (4.2) and (4.3) below is reqular:
s 1 T.0,)7
en - en + 77An(‘9n)a
v I(f)

Bu(6) = = 322G - 1:60,0)27( — 1:6,6).

j=1
Part 3. Construction of adaptive estimates

Theorem 4.3. Let {0,} C © be a discrete and \/n-consistent sequence of estimators of
0o. Under our assumptions (A.1)-(A.6)

An(én) — Ap(0n) = OPeo(l)

holds, if ¢, — o0, gn — o0, a(n) = 0, d, — 0, o(n)c, — 0, gpo(n)~*/n — 0 and no(n)
stays bounded.



LONG RANGE DEPENDENCE

YAN LIU

1. REFERENCE
Shibata (1980), AS.

2. NOTATIONS
2.1. Notations.

1. {z:} Gaussian stationary process
2.7 = FE(xix441), autocovariance

3. FUNDAMENTAL SETTING

3.1. Basics.
(i) Model
o
xt+2aja:t,j:et, t:...,—l,(),l,...,
j=1
where a1, ag, ...are real numbers, e; ~ N(0,0?).

(ii) the k x k covariance matrix
where 75 = 1);_j|.
(iii) the associated power series

A(z) =1+ Zajzj.
j=1

3.2. Assumptions.

(A1) 301 cjcnolaj] < oo
(A.2) A(z) is nonzero for |z| < 1.
(A.3)

Date: November 12, 2014.
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4. MAIN RESULTS

Lemma 4.1. Forany 1 <k < K,

NE| Y Xe(k)(erwrn — eert)/NIP < Kklla — a®)PIRIC Y sl + IR,

Kn,<t<n—1 —o00<j< 00

wherer_;=1; (j =1, 2, ...).

5. FURTHER READING

6. WORDS

1.

7. NEW KNOWLEDGE



(S)ON ESTIMATING THE INTENSITY OF LONG-RANGE
DEPENDENCE IN FINITE AND INFINITE VARIANCE TIME SERIES

GEN RYU

1. SUMMARY

The study includes both distributions with finite variance and infinite variance innova-
tions. The model is also assumed not only with long-range dependence, the short depen-
dence is also used in the paper.

When generating series with infinite variance, we will use independent symmetric a-
stable variables as innovations in FARIMA(p, d, q) series, and skewed stable and Pareto
distributions as the innovations in a FARIMA (0, d, 0) series. The parameter d is restricted
to interval [0,1 — 1/a).

note. The relation between the index of the similarity and ”d” in FARIMA is shown as

H=d+1/a.
note2. The parameter d plays the role of a differencing parameter in the FARIMA model.

note3. The X (™) defined below has the relation with S,
X(m) ~g mH_IS,

where S is a process which depends on the distribution of X but does not depend on m.

2. METHODS

2.1. Whittle Method. The Whittle estimator gave the best performance for the series
used in the study. If the parametric form of a time series is known, then the Whittle
estimator is to be recommended. Even if the exact form is not known, but the maximum
order (p, q) is known, this estimator can give good results.

_ [ I(n) v ﬂo v: v
Q) = [ i Bsdv+ [ tor fwinya

note. It is d and not H which is estimated even in the infinite variance case.

note2. If the model is under specified, the Whittle estimator becomes more biased than
any of the others used here.

Date: May 28, 2012.
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2.2. Local Whittle Method. The second recommended method is Local Whittle esti-
mator, which is proposed by Robinson(1995).
One estimates d by minimizing

1 & I(y)) 1
R(d) =log { 17> =" —2d5- > logu;.
j=1"j j=1

note. There are as yet no corresponding theoretical results.

2.3. Periodogram Method. The periodogram is defined as

where v is the frequency, N is the length of the series, and X is the time series. I(v) is
an estimator of the spectral density of X, and a series with long-range dependence will
have a spectral density proportional to |v|~2% close to the origin. A log-log regression thus
provides an estimate of d. In the infinite variance case the problem is significantly more
complicated.

note. There are no theoretical results for the periodogram regression method. The pro-
portionality to \V\_Qd as v — 0, however, seems to hold empirically in the infinite variance
case as well.

2.4. The estimator for H in robust order.

2.4.1. Variance of Residuals Method(VR). The Variance of Residuals method was intro-
duced by Peng et al.(1994). First the series is divided into blocks of size m. Then, within
each block, the partial sums of the series are calculated,

A least-squares line, a + bt, is fitted to the partial sums within each block, and the sample
variance of the residuals is computed,

m
(Y(t) —a—bt)>
t=1
As the calculation in the paper, the slope of the log-log plot shows 2H. In practice, this is
not recommended because the scatter is too large for the infinite variance series.
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2.4.2. Absolute Value Method. Let X (™) (k) be

km
X(m)(k):% > X, k=12,...[N/m].
i=(k—1)m+1

Then we take the first absolute moment of this series,
1 N/m
AMM™ = — XM(k) - X
W 2 X0 - X1
where X is the overall series mean. The same thing can be concluded like above, that is,
the slope of log-log lime is the function of H, H — 1.

note. The method loses efficiency, especially for values for « close to 1.

3. INTERESTING FACTS

3.1. About S in the first section. In the finite variance case S is Fractional Gaussian
Noise (FGN) and in the infinite variance case it is Linear Fractional Stable Noise (LFSN).

The FGN series {X;,i > 1} is a zero mean, stationary, Gaussian time series whose
autocovariance function at lag h is:

1
v(h) = S{(h+ 12 _op2dtl 1 \p — 1241 R >0,-1/2 < d < 1/2.
For d # 0, the autocovariance satisfies
v(h) ~ d(2d + 1)h*1  as h — co.
In addition, the spectral density is given by:
o0
_ A 1 —2d
f(v) = Cy(2sin 5) k_z_oo PR ~ Cylv| as v — 0.

3.2. About stable distribution. If either Pareto or stable with parameter «, then P(e >
x) ~ Cx~® as x — oo, that is, the probability tails decrease slowly, like a power function.
Moreover, Var(e) = co if & < 2, and Ele| =00 if 0 < o < 1.

3.3. About long dependence. The FARIMA(p, d, q) family of models is widely used in
the modeling of time series with long-range dependence. These are moving averages

n

X, = § Cn—i€i,

1=—00

where ¢, behaves like k%! for large k and the ¢;’s are independent, identically distributed
random variables.
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1. THE MAIN POINTS OF THE PAPER

(1) Quadratic serial rank statistics are introduced to be some optimal tests which
is sensitive against a whole subclass of the alternative in the case of unspecified
alternative.

(2) The asymptotically maximin most powerful quadratic serial rank tests (rank port-
manteau tests) are obtained after deriving their asymptotic distribution tunder the
null hypothesis and contiguous ARMA alternatives.

(3) The asymptotic relative efficiencies of the rank portmanteau tests are derived.

2. NOTATIONS

2.1. Hgy. the contiguous ARMA alternatives Hg ; are completely specified by a vector
d = (di,...,dp) of real coefficients and a density type f.

2.2. f. an unspecified member of the family of the densities is denoted by f(x), while the
specified is denoted by f,(z).

3. DEFINITIONS

3.1. strongly unimodal density. The density f(z) is called strongly unimodal if

(1) —log f(x) is a convex function within some open interval (a,b) such that —oo <
a<b< oo
2) [7 f(z)dz=1.

note. Such densities are absolutely continuous within (a,b) and

@
7(@)

[—log f(z)]
is a non-decreasing function.

note2. Normal, Double exponential, Exponential, Logistic, Uniform, Triangular and etc
are strongly unimodal density.

Date: February 4, 2013.
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3.2. asymptotically maximin most powerful tests. a sequence ¢™ of tests is said to
be asymptotically maximin most powerful for the sequence of null hypotheses H™ against
the sequence of alternatives K" if its power asymptotically reached the envelope power
function (o, H", K™), i.e. if
limsup[ Ejm¢" —a] <0, for all 1™ e g™,
n—oo

and
lim inf[ By o™ — B(a, HW, K™)] >0 for all 1™ e K™,
n—oo

4. ASSUMPTIONS AND PROPOSITIONS

4.1. assumptions(1985).
Let {e;t € Z} be a discrete-time stationary white noise. Assume that it has a density
f(z), and that the following conditions are satisfied:

(1) ¢ has finite moments up to the third order; denote its variance by o2.
(2) f(x) is a.e. derivative, and its derivative f’(z) satisfies

| W@ < o0

(3) f(x) has finite Fisher’s information I(f).
(4) Assume ¢(x) is a.e. derivative, and its derivative ¢’ (x) satisfies a Lipschitz condition

6/ (x) = ') < Alz —yl, ae.

4.2. assumptions(1987). Assume (2) and (3) in the assumption(1985) hold.

(1) a density type f means the family of densities {f,(z) = % f1(%£);0 > 0} indexed by

T o
scale parameter.
(2) The assumptions below is the same to the definition of white noise.

/wf(:c) dx =0,
/x2f(x) dx = o

note. The existence of the third moment is not assumed.
(3) Letting
fi(=)
o(z) =
(z) @)

note. From this assumption, it is seen that
1 =07 [ @@ d

that is, o21(f) = I(f1).
(4) Assume d), # 0.

a.e.
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4.3. quadratic serial rank statistics.

Proposition 4.1. Denote by J,(vp,+1,...,v1) the score-generating functions associated
with S, (uw=1,...,q), and assume that they satisfy

/ J(”Up+1,...,U1)Hde:0, (Zzl7ﬂp+]‘)
[0,2]p+1 i
Then, under Hy,

n'/2(8 —m) % N(0,V?2)

where V2 = (V) d.e. (writing Ju(vps1,--.,v1) for Ju(vp,+1,...,01)),

(4.1) VHV = / J.U»(UP‘H’ ey Ul)Jy(Up+1, e ,1)1) dvp+1 e Cl?)l
[0,1]p+1

P
+Z/ {JM(Up+17~~7U1)Ju(vp+1+k7~-'7vk+1)
=1 7 [0,1]p+1+k
+ Ju(vp+1+k7 ce ,vl+k)Jy(’Up+1, . ,1)1) dUerlJrk ...dvy
(,v=1,...,q).
Under Hd7f,
n2(8 —m) % (C'd, V?)
where C is a p X q matriz with entries
p—i
_ -1 —1
(42) Ciu= Z /[0 i Ju(Ups1s - v1)OFT (Vp1—)) Y (Vpt1—j—i) dvpya - - - dun,
j=0 7 1OHF
(it=1,....p;u=1,...,q).

Proposition 4.2. Using the same notation as in Prop 2.1, and assuming that V2 is of
rank q, the rank statistic

Q=n(S—m)V2S—-—m).
18, under Hy,
Q = x*(a),
and under Hgq ¢
Q 4 nonx>q

and with non-centrality parameter

1
A(d) = 5d’cv—2c’al.
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4.4. testing Hy against Hy; and asymptotically most powerful test against Hy ;.
Consider the following linear serial rank statistic of order i:

Ty = {(n— 1)1t2:1¢ (Ffl (n}j_t1>> F! <nRjrl) —m} /s

1 _ 11 1 2
e 2 e ) e ()
n(n —1) I<iiT<n n+1 n+1

()2 = {n(n - 1)} ! §{¢ (F (H 1)) Fy (ni 1>}

(n —2i)(n —4)~*
1

n -1 le -1 i2 1 2'2 . i3
(7S fo ) () (i) (229)

{n? —n(2i+3)+i* +5i}(n—i)!
ny - —1 il -1 iQ -1 i3 1 7:4
<4 1<i17éi§3;éi4<n{¢ (FI <n+1>>¢<F1 <n—|—1>) <F1 n—i—l)Fl <n+1>}

Assumption 4.3. Assume f to be a strongly unimodal density.

where

Proposition 4.4.

(1) 7@ admits the score-generating function

Sy Vi1, 01) = S(Fy H(vigr)) Fy (v {02 I(f) 12

(2) Denote by ry the vector of f-rank autocorrelations of orders 1 through q (q arbitrary-
assume q > p). Then, under Hy

n1/27“f 4 N(0, I;xq);
under Hg 5
dq

02y SN {PI)M2|  | Ixg
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Proposition 4.5. Consider the linear serial rank statistic

» » 1/2
di . 2
df:ZHdHT(i)f with ||d| = (Zd2>
i=1 i=1

Then
(1) under Hy,
nl/QS;’f 4, N(0,1);
under Hp r, h = (hy,...,hy) € R?

P
nl/zsffl’f i>./\/'<{02I }1/ Z )

=1

note. the mean is a form of inner product between h and the mean in prop 4.4.
(2) The test based on S} f (at level o) is asymptotically most powerful, within the class
of all tests of level «, for testing Hy against Hq ;.

4.5. Testing Hy against Hg s (d unspecified, f specified).
Assumption 4.6. Assume f and g to be a strongly unimodal density.

Proposition 4.7. The quadratic serial rank statistic
P P

QF=> (n=)(rus)> =n>_ (raog)? +op(1)

i=1 i=1
18
(1) under Hy

under Hg g,

d
Q% = nonx*(p);
with non-centrality parameter

2
@ Aol = 3l { [ or oyt [ Fe a1}

Under Hq,f, (a) reaches, for given ||d|| = d, its mazimal value A} (d) = sld|2o?I(f).
(2) Q% provides, at any level o € (0,1) and for any value of d > 0, an asymptotically
mazimin most powerful test for Hy against K(d).

Proposition 4.8. The ARE of an f— rank portmanteau statistic Qé")* with respect to

another one, Qén)*, when testing against Hd s s given by

e ) [ (G (W) pp(FH(w)) du [ G (v) F~(v) dv \
ef(Qg ) ,Qh ) = 0'2[ <f gbi ))¢f( u))dufH*l(v)Ffl(v) dv>
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(S)ON ESTIMATING THE INTENSITY OF LONG-RANGE
DEPENDENCE IN FINITE AND INFINITE VARIANCE TIME SERIES

GEN RYU

1. SUMMARY

The study includes both distributions with finite variance and infinite variance innova-
tions. The model is also assumed not only with long-range dependence, the short depen-
dence is also used in the paper.

When generating series with infinite variance, we will use independent symmetric a-
stable variables as innovations in FARIMA(p, d, q) series, and skewed stable and Pareto
distributions as the innovations in a FARIMA (0, d, 0) series. The parameter d is restricted
to interval [0,1 — 1/a).

note. The relation between the index of the similarity and ”d” in FARIMA is shown as

H=d+1/a.
note2. The parameter d plays the role of a differencing parameter in the FARIMA model.

note3. The X (™) defined below has the relation with S,
X(m) ~g mH_IS,

where S is a process which depends on the distribution of X but does not depend on m.

2. METHODS

2.1. Whittle Method. The Whittle estimator gave the best performance for the series
used in the study. If the parametric form of a time series is known, then the Whittle
estimator is to be recommended. Even if the exact form is not known, but the maximum
order (p, q) is known, this estimator can give good results.

_ [ I(n) v ﬂo v: v
Q) = [ i Bsdv+ [ tor fwinya

note. It is d and not H which is estimated even in the infinite variance case.

note2. If the model is under specified, the Whittle estimator becomes more biased than
any of the others used here.

Date: May 28, 2012.
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2.2. Local Whittle Method. The second recommended method is Local Whittle esti-
mator, which is proposed by Robinson(1995).
One estimates d by minimizing

1 & I(y)) 1
R(d) =log { 17> =" —2d5- > logu;.
j=1"j j=1

note. There are as yet no corresponding theoretical results.

2.3. Periodogram Method. The periodogram is defined as

where v is the frequency, N is the length of the series, and X is the time series. I(v) is
an estimator of the spectral density of X, and a series with long-range dependence will
have a spectral density proportional to |v|~2% close to the origin. A log-log regression thus
provides an estimate of d. In the infinite variance case the problem is significantly more
complicated.

note. There are no theoretical results for the periodogram regression method. The pro-
portionality to \V\_Qd as v — 0, however, seems to hold empirically in the infinite variance
case as well.

2.4. The estimator for H in robust order.

2.4.1. Variance of Residuals Method(VR). The Variance of Residuals method was intro-
duced by Peng et al.(1994). First the series is divided into blocks of size m. Then, within
each block, the partial sums of the series are calculated,

A least-squares line, a + bt, is fitted to the partial sums within each block, and the sample
variance of the residuals is computed,

m
(Y(t) —a—bt)>
t=1
As the calculation in the paper, the slope of the log-log plot shows 2H. In practice, this is
not recommended because the scatter is too large for the infinite variance series.



(S)ON ESTIMATING THE INTENSITY OF LONG-RANGE DEPENDENCE IN FINITE AND INFINITE VARIANCE TIME SERIES

2.4.2. Absolute Value Method. Let X (™) (k) be

km
X(m)(k):% > X, k=12,...[N/m].
i=(k—1)m+1

Then we take the first absolute moment of this series,
1 N/m
AMM™ = — XM(k) - X
W 2 X0 - X1
where X is the overall series mean. The same thing can be concluded like above, that is,
the slope of log-log lime is the function of H, H — 1.

note. The method loses efficiency, especially for values for « close to 1.

3. INTERESTING FACTS

3.1. About S in the first section. In the finite variance case S is Fractional Gaussian
Noise (FGN) and in the infinite variance case it is Linear Fractional Stable Noise (LFSN).

The FGN series {X;,i > 1} is a zero mean, stationary, Gaussian time series whose
autocovariance function at lag h is:

1
v(h) = S{(h+ 12 _op2dtl 1 \p — 1241 R >0,-1/2 < d < 1/2.
For d # 0, the autocovariance satisfies
v(h) ~ d(2d + 1)h*1  as h — co.
In addition, the spectral density is given by:
o0
_ A 1 —2d
f(v) = Cy(2sin 5) k_z_oo PR ~ Cylv| as v — 0.

3.2. About stable distribution. If either Pareto or stable with parameter «, then P(e >
x) ~ Cx~® as x — oo, that is, the probability tails decrease slowly, like a power function.
Moreover, Var(e) = co if & < 2, and Ele| =00 if 0 < o < 1.

3.3. About long dependence. The FARIMA(p, d, q) family of models is widely used in
the modeling of time series with long-range dependence. These are moving averages

n

X, = § Cn—i€i,

1=—00

where ¢, behaves like k%! for large k and the ¢;’s are independent, identically distributed
random variables.



SUMMARY-TIME SERIES(APPLICATIONS TO FINANCE)

GEN RYU

1. ARIMA AND SARIMA

1.1. ARIMA models (autoregressive integrated moving average model). ARIMA
model is a generalization of ARMA model. For ARMA (p,q) model Wy, the ARIMA (p,d,q)
model Y; is defined as

(1 - B)Y; =W,
If we write ARMA(p,q) in an explicit way,

o(B)Wy = 0(B)Zy,
then the ARIMA(p,d,q) can be shown as

¢(B)(1 - B)Y; = 0(B)Z;.

note. The definition varies from books to books. So you must be careful to put the
definition in mind.

Examples:

(1) Y; = a + Bt + Ny can be written as ARIMA(0,1,1).
(2) ARIMA(0,1,0) is a Random Walk model.
(3) (contiof (2)) the price of a stock at the end of day ¢ can be written as ARIMA(0,1,0).

1.2. Another definition for ARIMA model.

Definition 1.1 (The ARIMA(p,d,q) Process). If d is a non-negative integer, then {X;} is
said to be an ARIMA (p,d,q) process if Y; := (1 — B)? X is a causal ARMA (p,q) process.

note. This definition is from ”Time seris: Theory and Methods”.
1.3. the extension of the ARIMA model-SARIMA model.

Definition 1.2 (The SARIMA(p,d,q) x (P, D,Q)s Process). If d and D are non-negative
integers, then { X} is said to be a seasonal ARIMA (p,d,q) x (P, D,Q)s process with period
s if the diffenenced process Yy := (1 — B)4(1 — B*)P X, is a causal ARMA process,

$(B)2(B)Y: = 0(B)O(B*)Z;,  {Zi} ~ WN(0,07)
where ¢(z) = 1—d12—++—ppzP, ®(2) = 1= P12z —- - —®p2 0(2) = 1+ 012+ +0,29,
O(2) =1+ 6012 — - — Og2¥.

Date: January 29, 2012.



2 GEN RYU

2. INVERTIBLE AND NONCAUSAL
2.1. invertible.

Theorem 2.1. An MA(q) model {Y;} is invertible if the roots of the equation O(B) = 0
all lie outside the unit circle.

2.2. causal.

Definition 2.2. A process {Y:} is said to be causal if there exists a sequence of constants
{1;} s such that Yy = 372 v Z—j with 3222 [¥] < oo,

Theorem 2.3. An AR(p) process is causal if the roots of the characteristic polynomial
d(z) =1— ¢z — - — ¢p2P all lie outside the unit circle.

3. ACF AnD PACF
3.1. ACF.

Definition 3.1. Let {X;} be a stationary process. Then

(1) () = Cov(Xy, Xitr) is called the autocovariance function.
(2) p(1) =~(7)/~(0) is called the autocorrelation function.

3.2. PACF.
Definition 3.2. The PACF of a stationary time series is defined as
(3.1) o = p(l),

(3.2) ¢kk = corr(YkH — Ps’p{Y2’.,,’Yk}Yk+17Y1 — Ps}:{Yg,---,Yk}Yl)

where Pg,ty, ... v, Y denotes the projection of the random variable Y onto the closed linear
subspace spanned by the random variables {Ya, ..., Y}

Examples:

(1) ¢11 = corr (Y1 — Pap(vy, v} Yar1, Y1 — Popiva, v} Y1)
(2) ARIMA(0,1,0) is a Random Walk model.
(3) (conti of (2)) the price of a stock at the end of day ¢ can be written as ARIMA(0,1,0).



SUMMARY-DISCRIMINANT ANALYSIS FOR DYNAMICS OF STABLE
PROCESSES

GEN RYU

1. DEFINITION
On the linear process
oo
(1.1) Xe= Y iZiy, tel,
Jj=—00

where the innovation {Z;}cz is a seq of iid symmetric a-stable r.v. for a € (0,2), many
key words are defined as follows.

1.1. characteristic exponent. « is called characteristic exponent.

1.2. the power transfer function of the linear filter. The power transfer function of
the linear filter is defined as

WP =1 Y ¢, A€ [-m .

j=—o0

1.3. the normalized power transfer function of {X;}. The normalized power transfer
function of {X;} is written as

. A\ 9 (?O:_oow,e—ij)\Q o0 »
f(A)EWfpz)' :|ZJZ?>° X7 N I e
j=—c0 ¥j

k=—0o0

where
> 7o itk
Yoty

p(k) = keZ.

Date: February 19, 2012.
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note. Since

| D e P = (>0 e (Y e
j=—00 Jj=—00 [=—00

— Z i wj,l/]lef’ij)\efil)\

j=—o00l=—00

= i i Wpjhre A

j=—o00l=—00
oo o

= > ) dbike ™, where k=13
Jj=—00 k=—0o0

1.4. smoothed self-normalized periodogram. It is called the smoothed self-normalized
periodogram if it takes the form

> Walnx (M)

[k|<m

2. THE MAIN POINT OF THIS PAPER

2.1. consistency. The misclassification probabilities converge to 0 as the sample size tends
to infinity.

2.2. the goodness of fit. The evaluation of I,,(f, §) is done in terms of misclassification
probabilities when one density is contiguous to another.

3. ASSUMPTIONS AND THEOREMS

The hypotheses is defined as
me f) m (N,

and the classification statistic is defined as

1~ [ (1) s ) o)

3.1. consistency.

Assumption 3.1. The linear filter {1);};cz satisfies

oo
> il < oo

j==o0

for some § < min(1, ).
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notel. Under this assumption, we also have

> [Kllpk)°

k=—o0

note2. This assumption also implies the normalized power transfer function can be defined
as (1.3) by using Holder’s inequality.

Assumption 3.2. f(\) and G()\) are positive on [r, 7], and f()\) # G(\) on a set of positive
Lebesgue measure.

Theorem 3.3. Let {X;}icz be defined by (1.1) and suppose that Asp1-2 hold. Then, for
the hypothesis, the misclassification probabilities tend to 0 as n — co. That s,

PQ21) = P(In(f,9) < 0lm) =0, P(12) = P(I.(f,9) > Olmz) = 0.

3.2. the goodness of fit. Now we consider the goodness of fit in the case that g(N) is
contiguous to f(A). That is

FNO)  m: g(A) = F(N8 +ayh),

<logn>1/a
an = .
n

Assumption 3.4. f()\|0) is continuously three times differentiable with respect to 6 € O,
and

where

> g
| F(Al@)] < oo
e 00,000,

Assumption 3.5. For some 6 < min(1,«), and for k,l=1,...,q

Zy e f (A0) F~L(A]0) cos(tX) dA]° < oo,

™

Z‘ . aa g (\16) FHNIB) cos(t) AP’ < oo,

Theorem 3.6. Let {X;}icz be defined by (1.1) and suppose that Asp1-4 hold. Then under
the contiguous condition,

T
lim P|1) = P(Z2 > IO
nioe Yo = 4(Co X2, [E/6)THI7)
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where
0 0 - :
F(O) = [/W 87 f(\6) 7, FNO)F2(\|0) d/\} g (q x q) — matriz;
&(0) = [/W 8i FNB) F71(A@)(cos(tN) — p(t ))d)\] o (g x 1) — vector;
(1-a)o ,
c, = 2T'(2 — a) cos /2’ ifasl,
o/, if a=1.

and Yy is an §-stable positive r.v. which is independent of {Zi}tez.

3.3. the estimation of f (A). We can estimate the npt function by the smoothed self-
normalized periodogram
> Walk) o x (M)

|k|<m
where L

m = my, is a seq in N such that

mp
my, o0 and — —0,n— 0.
n

{Wy}nen is a seq of weight functions satisfying the conditions:

> Wak) = 1

|k|<m
Z Wn(k)? = o(1), n— oo;
[k|<m

Wi(k) = Wy(=Ek) Wy (k) > 0.



SUMMARY=LOCAL ASYMPTOTIC NORMALITY FOR REGRESSION
MODELS WITH LONG-MEMORY DISTURBANCE

GEN RYU

1. THE MAIN POINT OF THE PAPER

1.1. The local asymptotic normality property. In the paper, the local asymptotic
normality property is established for a regression model with fractional ARIMA (p,d,q)
€rTors.

1.2. applications for inference problems in the long-memory context.

(1) testing linear constraints on the parameters;
(2) the discriminant analysis problem;

(3) the construction of locally asymptotically minimax adaptive estimators.
1.3. other applications in the long-memory context.
1) hypothesis testing;
2) discriminant analysis;
3) rank-based testing;
4) locally asymptotically minimax;
5) adaptive estimation.

(
(
(
(
(

2. QUESTION

(1) What is Durbin-Watson test?

Date: January 31, 2012.



SUMMARY=LIMIT THEORY FOR THE SAMPLE COVARIANCE AND
CORRELATION FUNCTIONS OF MOVING AVERAGES

GEN RYU

1. DEFINITION

We consider the discrete time moving average process

oo
(1.1) Xe= Y ¢Zi,, te€L
Jj=—00
with
o
Z |cj| < oo.
j=—00

in this summary.

1.1. regularly varying tail probabilities. {Z;, —co < t < oo} is an independent and
identically distributed(iid) sequence of random variables with regularly varying tail prob-
abilities, that is,
P(|Zy| > x) = 2~ *L(x)

with @ > 0 and L(z) a slowly varying function at co and,

P(Zk > :C) P(Zk < —x)

Pz > P ™ B(zsae
asx —00,0<p<landqg=1-p.

1.2. the sample correlation function.

2 XeXevn

. h>0.
> X7

p(h)

1.3. the correlation function.
D e oo CiCjth

p(h) = Z(]?i—oo C?

1.4. the sample covariance function.
. 1<
v(h) = - ;XtXH-ha h > 0.

Date: January 31, 2012.
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2. THE MAIN POINTS OF THIS PAPER

2.1. the limit distribution of the sample covariance function. The limit distribution
is derived in the case that the process has a finite variance but an infinite fourth moment.

2.2. convergence(0 < a < 2). The sample correlation function converges in distribution
to the ratio of two independent stable random variables with indices o and «/2, respectively.

2.3. the limit distribution for the least squares estimates. The limit distribution
for the least squares estimates of the parameters in an AR model.

3. PROPOSITIONS

Proposition 3.1. If2 < a <4 and EZ; = 0, then for every positive integer h,

n o0
a2 (nA(h) =Y Y cicinZi ;) = 0,
t=1i=—o00

where
an = inf{x; P(|Z1| > z) < n~'}.



SUMMARY-MARTINGALE CENTRAL LIMIT THEOREMS

GEN RYU

1. NOTATIONS

Let {Sy, Fn,n =1,2,...} be a martingale on the probability space {Q, F, P},
with

So = 0,
X, = Sp—Su-1, n=12....

note. Fop need not be the trivial o-field {0, Q}.

6i(t) = E(e™|F_y) = Bj_ (),

(1.2) on = Ena(X7),
n
(1.3) VZ o= 20]2-;
j=1
(1.4) s2 = EV?=EFES?
_ -2 2
(1.5) b, = s, I}lgri(aj.

2. DEFINITION

2.1. the Lindeberg condition. the Lindeberg condition is said to hold if the martingale
satisfies

Vis 2 —p 1
and

n
SEQZEX?IUXJ-\ > esp) —p 0 asn — oo.
j=1

for all € > 0.

Date: January 28, 2012.
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3. ASSUMPTIONS

Assumption 3.1.
Vis 2 —p 1

For this class of martingales, the Lindeberg condition is said to hold if
Assumption 3.2.
n
5,2 ZEXJZI(|X]-| > esp) »p 0 asn — oo.

j=1
for all e > 0.



ROBUSTNESS

YAN LIU

1. REFERENCE
Kiinsch (1984), AS.

2. NOTATIONS

2.1. Notations.
1. h(x) a known probability density on R
2. o2 variance of Uj;
3. p(z,n)™ m-dimensional marginal distribution of stationary processes
4. M™ the set of p(z,n)™
5.0 € © CR? (¢g<p+2) unknown parameter
6. T a functional M™ — © (or restrict T' to a certain subset of M)
7. v =sup, |[ICr(x,0)| gross error sensitivity
8. 0= (01,62)
9. 91—0’&11(192 (’I’],ﬁl,...,pr)
10. K = (K1, K2)
11 ¥ = (1, )

2.2. Fundamental Setting.
(i) AR(p) process

Zﬁk k=) + U, iid U

Using z} = x; — 1, Kk 18 deﬁned by
LL’
H(ml,...,$p+1;0) 210 h( Z/Bk p+1— k‘)

00
Furthermore, let u denote
u =, Z BrTy i1k
(ii) m-dimensional marginal distributions

Date: September 1, 2014.
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(a) Define x; = x;_p, if i > kn for k € N;
(b) m-dimensional marginal distributions

n
p(xa n)m - n_l Z 5('7;17 s 7xi+m—1)7

where 0(x;, ..., %iym—1) is the point mass at z € R™.
(iii) M-estimator defined by
n—m-+1

> (g Tipme1i0n) =0,

(iv) Choice of the functional T" : for T'(uy*) = 6,

On(21,...,20) =T (p(x,n)™).
(v) Any version of the influence function IC7(z, 6)

/ICT(x,G),ug(d$m|xm1, c L Tym—p) =0,

(vi) Asymptotical variance-covariance matrix
C(T,0) = / ICr (2, 0)ICr(x, )T 1y (dx).

Lemma 2.1. If {X;}icz is stationary ergodic process, then
plz,n)™ = ™ asn — oo.

2.3. Hampel’s optimality problem. Minimize the trace of the asymptotic covariance
matrix C(T, ) among all estimators of (iv) which have an influence function and for which

7" = sup[lCr(z,0)| < c(6).

2.4. Huber function. c
)
2]

3. FUNDAMENTAL THEOREMS

Theorem 3. 1 (Kiinsch (1984), Theorem 1.1). A functional L : M™ — R is of the form

H.(z) = xmin(1,

= [t(z)v™(dx) with t bounded and continuous zjj”L 18 aﬁine and weakly continuous.
Theorem 3.2 (Kiinsch (1984), Theorem 1.2). [t(z) =0 for all v € M™ iff
tz1, .y xm) = g(x1, ..oy Tm—1) — g(x2, -+, Ty) with an arbztmry g.

Theorem 3.3 (Kiinsch (1984), Theorem 1.3). Let u denote the distribution of an AR (p)-
process. IfR™ — R, m > p, is continuous, sup|f(z)|/(1+|z|) < oo and [ f(x)u™(dx) =0,
then there exists a continuous function g : R™~! — R with sup|g(x)|/(1 + |z|) < 0o and

/f T1y-.-, T +g($1,...,xm_1) —9($27'” 7xm)u(dwm’xm—17”' 7$m—p) =0
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forall x1,...,xm_1. g is unique up to an additive constant.

4. OPTIMAL ROBUST ESTIMATORS

Theorem 4.1. Suppose o is known and h(x) = h(—z). If the bound c(0) is such that

/ H0)(A@)r(, 0)) (. 0)T p2 ™ (dr) = 1d

has a solution A(6) for all 6, then the solution of Hampel’s optimal problem is given by

{m =p+1,
¥(z,0) = Heg) (A(0)k(z,0)).

u

Theorem 4.2. If Yy(z1,...,2p41;0) = x(%) with x(-) even and v is one of the opti-
mal solutions of Hampel’s problem, then & is asymptotically independent of 0y and the
asymptotic covariance for 0o is the same as for known o.

5. WORDS
1. commence R 5
2. dwell W3
3. minutiae I XV HEW
4. predator-prey fHfH-HEH
5. sonar V=

6. FURTHER READING

6.1. robustness. Robust statistics, Maronna, Martin and Yohai

7. NOTATIONS

1. {ye, x4, rt}thl a stationary and weakly depedent process

2. 2, € X CR%

3. Yt € YCR

4. Hy the null hypothesis

5. v(y,9) a mean zero Gaussian process

6. B {(v,9) € Y x G EL(ye < y)g(ae)(my () — L(re—1 > 0)) = O}

7.1. Hypotheses.
e the null hypothesis Hy

FT(ylx) > F~(y|z) as. forall (y,z) €Y x X.
Rewrite the notations by WS“ where

T4 (z) = P(ri—1 > 0oy = ).
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Then the null hypothesis Hy is

E{l(yt < y)<1(rt:1 <0 - M1 2 0)> ’I’t = x} <0
o (@) o ()
for all (y,x) € Y x X. Moreover using instrument g € G where
da
G = {Gap; Gap(x Hl (a; < x; <b;) for some a,b € X},
=1

the hypothesis can be simplified more.

7.2. Test statistic.
ST = sup \/TmT(ya 9, ﬁ-+)7

(¥,9)€Y*G
where
1 T
(Y, 9.m) = = > 1w < y)gla){m(z) — Lrea > 0)},
t:l
and Nadaraya-Watson’s kernel
T
() = Dot L(ri—1 > 0Kp (2 — 2¢))

Z?:z Kn(z — xt)
where K : R% — R.

7.3. Empirical process.

VT(yvg) = \/T{gT(yag) - E&T(yag)}a

where

T
0) = 2 S {1 < v) ~ Folaalefng (2) — 1(re1 > 0))
t=1

7.4. Covariance of v(y, g).
)

C((y1,91), (y2,92)) = Jim Cov(vr(y1, g1), vr(y2, 92))-

8. RESULTS

Theorem 8.1. Under Assumptions and the null hypothesis Hy,

sup(, egV(Y,9)  if B#D
51 = {—oo ifB=0"
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1. WORDS

1) treatise HBf3
2) substantially 958

3) sadly ~=I12d

4) untimely Rz - 72

5) flourish K2 %

6) former colleagues Hij [FIfE

7) press ... to NZ... 2 €23, HFHT 5
8) come to life EE 9 %

9) tribute #iF b D

0) substantial 2>7% b O

1) incorporated lLH AL 54 %
2) designated 21F 54 %

3) painstaking H% ¥ %

4) patience i

5) long-lasting £ < 5 <

6) inspire B\ 3272 H 5

7) be acquainted with K> T\ %
8) striving §5 k98T %

9) lucidity BHM, BAPR

0) in this respect ZDRIUIEWT
1) formulae = formula

2) supplied with 52 6%

3) complement fifi5e

4) omitting Z4MET %

5) coverage HiPH, HERL

6) comprise Z&Le

7) sector FbF

8) due UARLZ 6N ERE

9) dual —~HEH®D

0) genesis L
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(
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2) prescribe BET %

3) stringent & UL \»

4) go far beyond I Z %

5) blended IEEGEHE ST

6) harmoniously FAFIYIC

7) ally E[RBTH %

8) amenable fEV>5 g 1>

9) tenable Fifii TE %

0) thrust HE

1) appraisal #-l

2) constitute Z KT %

3) pertain fJJE9 %

4) sequential HXHY 7%

5) depict ZHLT %

6) intricate A DA, S L 7%

7) encompass % & s

8) sibling & x 9 72\

9) duality — P

0) alignment %41l

1) invincible fEfD

2) annex &9 %
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WAVELET TRANSFORMATION

YAN LIU

1. INTRODUCTION

Both the Fourier transformation and the wavelet transformation transform the function
from time domain to frequency domain. The main idea is based on the theory of the basis
for functions. The difference between two methods is that the Fourier transformation is
based on the basis

B = {b(t — ngo)e"™";m,n € 7},

while the wavelet transformation is based on the basis
B = {|po| " *p(py ™t — ngo); m,n € Z}.

Here, () is called mother wavelet.

2. THEORY FOR BASIS

2.1. the basis for wavelets.

Definition 2.1 (MRA). The closed subspace {V};j € Z} C L*(R) is called multiresolution
analysis (MRA) if
(1) V} C V}+1>j S Z7
(ii) NjezVj = {0}, (UJEZVJ')C = L2(R)7
(iii) f(x) € V; if and only if f(2z) € Vj41,
(iv) there exists a function ¢(x) € Vj such that {¢(x — k);k € Z} is the orthornormal
basis for Vj.

Here, ¢(+) is called scaling function.
Note that L?(R) can be always represented by
o0
LPR)=V,®> aW..

s=J
Define

hy, = \/i/ch(:U)Lp(Qx — k)dax.
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The scaling function p(x) satisfies

p(z) = V2 hie(2w — k).
k

Mother wavelet ¢ (z) is defined by
Y(@) =Y (~D)Fhi_pp(2z — k).

k

As a result, any function f(z) € L*(R) has a representation

flz) = Z Z by k Vi k()

j=—00 k=—o00
= D anear@)+ Y0 D0 Biwtin(e).
k=—o00 j=J k=—00
Obviously,
bix = (fivje), kel
ajr = (f,onk), ke,
Bir = (fivjk), J=>J ke

2.2. norm. Define 7, f(x) = f(z — h). The Besov space B, , is defined as follows:
for f € L’(R), 1 < p < oo,

(1) for s € (0,1),
Vspa(f) = {/R(WYTIZL}I/(]’

f — fllL
Yspoo(f) = sup | s H P’
heR |h|

(2) for s =1,

Ypa(f) = {/R(HThf-I—T’;Llf—QfHLp)qT;Z}l/q’

Imnf +71-nf—2f|»

peolf) = sup ,
poolf) = sup g

then we say
fE€B,, = Yspaqlf) <oo, f € LP(R).

The Besov norm for f(z) € L*(R) N Bj , is well defined and

1f13.4 = (%]ag,k\z)“ F (2 (zk: . 2>1/2)q} g

1>0
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3. FURTHER READING

Kato and Masry (1999) for wavelet transform of fractional Brownian motion, Donoho
and Johnstone (1994, 1995) and Donoho et al. (1995, 1997) for wavelet for statistics. Also
see Japanese work like Kawasaki and Shibata (1995) and Shibata and Takagiwa (1997).

4. IDEA

The main purpose is to transmit functions using some finite device. Suppose f(z) € L.
It is known that f can be represented by the basis in L?.

f= Zanfn

Precisely, the wavelet is defined as follows.
Definition 4.1. A wavelet is a function W(¢) € L?(R) such that the family of functions
U = 220 (2t — k)

where j and k are arbitrary integers, is an orthonormal basis in the Hillbert space L?(R).

5. WORDS
1. archetypal JRHL oD BRI 70
2. recipient ZHUN
3. acoustics I =4
4. seismology HiFE
5. depict £HT 2
6. for the time being 7L 2%47z>C
7. spring to mind SHIZVED 5
8. intrinsic FHESED)



