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Preface

Nonparametric methods have been developed for statistical analysis of univariate
and multivariate observations in the area of time series analysis to carry out the
problem of hypothesis testing and inference in these two decades. Compared with
parametric methods, the notable feature is that they have fewer assumptions on
the model or the distribution of its innovations. Parametric statistics is still, how-
ever, the mainstream in the mathematical statistics according to its obviousness
and tractability. The theory of parametric case has been established since Le Cam
proposed his three lemmas and the sophisticated logic is attractable. We trea-
sure the theory in the Appendix in this Thesis. Nevertheless, the assumptions of
the parameters restrict its further development and we start the research on the
nonparametric methods.

Recently, two of the most remarkable nonparametric methods are empirical
likelihood ratio method and rank-based method. The former method was intro-
duced by Owen (1988), who applied it to the i.i.d data and showed the validity of
the empirical likelihood ratio statistic. For dependent data, Monti (1997), Ogata
and Taniguchi (2010) showed that the asymptotic distribution of the empirical
likelihood ratio statistic is asymptotically χ2-distributed based on the Whittle
likelihood type estimating function under the regular conditions. As a result, we
can construct confidence interval for pivotal quantity such as the coefficients in a
predictor and autocorrelation coefficients in multivariate stationary processes, etc.
The latter method is well known for Spearman’s rank correlation. Its history is so
long that we can not give accurate literature for it. The story of i.i.d case is well
established in the book by Hájek (1968). Hallin et al. (1985, 1987) and Hallin
and Puri (1991) extended the case to the depend case. Garel and Hallin (1995)
also proposed the LAN theorem for multiple time series and extended the result
further to the semiparametric case.

In the last few decades, it is founded in the most cases that the behavior of data
is neither independent nor Gaussian. Furthermore, heavy-tailed data have been
observed in a variety of fields involving electrical engineering, hydrology, finance
and physical systems (See Nolan (2012) and Samoradnitsky and Taqqu (2000)). In
particular, Fama (1965) and Mandelbrot (1963) gave the economic and financial
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examples that showed such data are poorly represented by Gaussian model. A
good choice for model in this case is proposed to use innovations with regularly
varying tail with index α, which is a necessary and sufficient condition for the limit
to be stable random variables. However, stable random variables are defined by its
Fourier transformation, and there is no analytic representation for the probability
density function. This is a reason why the model driven by stable innovations are
difficult to analyze by maximum likelihood method or in a parametric way.

In this research, we apply the nonparametric methods to the stable case and
investigated the property of the methods. In the empirical likelihood ratio case, we
applied the self-normalized method to the generalized linear case and obtained the
asymptotic distribution of the statistics. In the sequent chapter, we probed into
the self-normalized random variables’ asymptotic moments. In the last chapter,
we follow the idea introduced by Prof. Hallin and summarized his result.
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Chapter 1

Empirical Likelihood Method

1.1 Introduction

Recently, the multivariate data with infinite variance appear in various fields like
finance, economics and hydrology. To model these phenomena, one choice is to
apply generalized linear process to the case.

Figure 1.1: Stable distribution (α = 1.5)
and Normal distribution (α = 2)

Figure 1.2: AR(1) model driven by Stable
distribution (α = 2, 1.7, 1.5, 1.2, 1)

Figure 1.1 shows the probability density of both stable distribution and normal
distribution (α = 1.5 and α = 2 with σ = 1). Figure 1.2 shows a linear process
driven by the stable innovation (α = 2, 1.7, 1.5, 1.2, 1) with σ = 1. Although the
difference between the probability density function is not seemingly so much, it is
easy to see that the linear process with smaller index waves more dynamically in
its range. In fact, only the case of α = 2 has finite variance, and the others do
not. Accordingly, a process under regular conditions is much more different from
the stable one.
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For 1-dimensional linear process with infinite variance innovations, Davis and
Resnick (1985a, 1985b and 1986) investigated the sample autocorrelation function
(ACF) at lag h, and derived the consistency of ACF. Resnick and Stărică (1998)
gave a consistent estimator of the tail index α. In view of the frequency domain ap-
proach, Klüppelberg and Mikosch (1993, 1994 and 1996) proposed self-normalized
periodogram because the expectation of the usual periodogram does not exist, and
introduced some methods for parameter estimation and hypothesis testing. Then,
they showed that for any frequencies, self-normalized periodogram converges to a
random variable with finite second moment, and proved the convergence of the
integral functional of the self-normalized periodogram.

In this paper, we apply nonparametrical method to the discrete d-dimensional
linear process

X(t) =
∞∑
j=0

Ψ(j)Z(t− j). (1.1.1)

It is natural to express the process nonparametrically partly because finite para-
metric models often can not describe real data sufficiently, and partly because there
is no general solution of probability density function for stable distribution. Re-
cently economists and quantitive analysts have introduced stable stochastic models
to asset returns in econometrics and finance. In such situations, what we are in-
terested in is to test statistical hypothesis on the pivotal quantity ”θ = θ0”, such
as the correlation between the different realizations. To achieve this goal, Monti
(1997) and Ogata and Taniguchi (2010) employed the empirical likelihood to con-
struct confidence sets for linear processes when innovations have finite variance.
A plausible way to define the important index θ0 is Whittle’s approach, that is,
θ0 minimizes the disparity

D(fθ, g) =

∫ π

−π

tr{f(ω;θ)−1g(ω))}dω. (1.1.2)

The empirical likelihood ratio function for the problem of testing H: θ = θ0 is
defined as

R(θ) = max
ω1,...,ωn

{
n∏

t=1

nωt ;
n∑

t=1

ωt m(λt;θ) = 0,
n∑

t=1

ωt = 1, 0 ≤ ωt ≤ 1 , ∀t

}
,

(1.1.3)
and then the estimating function takes the form

m(λt;θ) ≡
∂

∂θ
tr{f(λt;θ)−1In,X(λt)}, λt =

2πt

n
∈ (−π, π ]. (1.1.4)

For our general stable linear process, we derive the limit distribution of R(θ0) with
its normalizing factor and construct the confidence interval through a numerical
method.
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Here it should be noted that our extension to the stable case from the finite
variance case requires new asymptotic methods, and we report new aspects of the
asymptotics, which are different from the usual ones. Furthermore, we extend the
results to the multivariate one, which is extremely important from a viewpoint of
practical use. The way to derive the asymptotics of the multivariate case has also
new aspects. One is that the self-normalizing factor is not the square root matrix
but the norm of the stable series. The other is that we need stronger assumption
on the pivotal quantity to have the asymptotic distribution hold.

1.2 Vector α-stable Processes

We consider a d-dimensional vector-valued linear process {X(t); t ∈ Z} generated
by

X(t) =
∞∑
j=0

Ψ(j)Z(t− j) (1.2.1)

where Ψ(j) are d×d real matrices, and {Z(t)} is an independently and identically
distributed sequence of symmetric α-stable random vectors whose elements are
also independent.

1.2.1 Notations and Preliminaries

First, we give a brief review on the notation in this chapter. we use Bold letters
to represent vectors or matrices. For an element in vectors or matrices, we use
underscript. For instance, Aj denotes the jth entry in the vector A, where Aij

denotes the element lying in the ith row and jth column of the matrix A.
The argument about the frequency domain makes us unable to escape from

the complex numbers. We generally use Ā to denote the complex conjugate of A
regardless of whether A is a complex number or a complex matrix.

Next, the usage of characters are as follows. Note that we use ω ∈ [−π, π] for
continuous case, and λt =

2πt
n

∈ (−π, π] for discrete case. For any random vector
A, the sample autocovariance and the periodogram matrices are defined as

Γ̂n,A(h) = n−2/α

n−|h|∑
t=1

A(t)A(t+ h)′,

In,A(ω) = dn,A(ω)dn,A(ω)
∗, dn,A(ω) = n−1/α

n∑
t=1

A(t)eiωt,

respectively.
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There are two norms used in this paper. One is the Euclidean norm, which is
denoted by ∥ · ∥E. Secondly, based on the observed stretch {X(t), 1 ≤ t ≤ n}, the
self-normalized term, denoted by ∥Z∥N , is defined as follows:

∥Z∥N ≡

√√√√ n∑
t=1

d∑
i=1

Z(t)2i . (1.2.2)

It is well known that Z(t)2i is in the domain of attraction of a stable limit with
α/2, and the linear transformation of stable distribution with nonrandom scale is
also stable with the same characteristic exponent. Thus the sum

∑d
i=1 Z(t)

2
i is

also in the domain of attraction of a stable limit with α/2. The normalized form
of vectors is written as

Z̃(t)i =
Z(t)i
∥Z∥N

, i = 1, . . . , d. (1.2.3)

For the model (1.1.1), we define the true power transfer function g(ω) by

g(ω) = Ψ(ω)Ψ(ω)∗,

where Ψ(ω) =
∑∞

j=0Ψ(j)eijω. To derive the asymptotics of the empirical likelihood
ratio function, we write a fitted spectral in the parametric way, that is, we use
f(ω;θ), which satisfies assumptions in the next section. It is not necessary that
the true spectral density be in the family of fitted spectral densities. Here we
define the pivotal value θ0, which satisfies

∂

∂θ

∫ π

−π

tr
[
{f(ω;θ)}−1g(ω)

]
dω
∣∣∣
θ=θ0

= 0. (1.2.4)

For example, we can use the constrained family to derive the autocorrelation,
the interpolation or the prediction. The empirical likelihood ratio is defined as

R(θ) = max{
n∏

t=1

npt

∣∣∣ n∑
t=1

ptm(λt;θ) = 0, pt ≥ 0,
n∑

t=1

pt = 1}, (1.2.5)

with any estimating function m(λt;θ). In the time series literature, the most
common estimating function is

m(λt;θ) =
∂

∂θ
tr{f(λt;θ)−1In,X(λt)}, (1.2.6)

which is called the Whittle likelihood. Also, for the brevity, we define moment
functions of the estimating function Pn(θ) and Sn(θ) as follows:

Pn(θ) =
1

n

n∑
t=1

m(λt;θ) (1.2.7)

Sn(θ) =
1

n

n∑
t=1

m(λt;θ)m(λt;θ)
′. (1.2.8)
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Assumptions through this chapter are given here:

Assumption 1.2.1. Assume that X(t) is generated by (1.1.1) where

∞∑
j=0

j|Ψ(j)kl|δ <∞, for k, l = 1, 2, . . . , d where δ < min{α, 1}. (1.2.9)

Remark 1.2.2. Under this assumption, (1.1.1) is well-defined. See Brockwell and
davis (1991) or Petorov (1975).

Define the family F of the fitted power transfer function as

F = {f(ω;θ)
∣∣∣f(ω;θ) = ( ∞∑

j=0

Ξ(j;θ)eijω
)( ∞∑

j=0

Ξ(j;θ)eijω
)∗
,θ ∈ Θ ⊂ Rq},

(1.2.10)
where

∞∑
j=0

j|Ξ(j)kl|δ <∞, for k, l = 1, 2, . . . , d where δ < min{α, 1}. (1.2.11)

Assumption 1.2.3.

(i) Θ is a compact subset of Rq.

(ii) There exists a unique θ0 ∈ Θ satisfying (1.2.4).

(iii) f(ω;θ) ∈ F is continuously differentiable with respect to θ.

The assumption below guarantees the convergence of the functional of peri-
odogram by inequality of an application of Theorem 3.1 in Rosinski and Woyczyn-
ski (1987).

Assumption 1.2.4. For some µ ∈ (0, α) and all k = 1, · · · , q,

∞∑
t=1

∥∥∥∫ π

−π

∂

∂θk
Ψ(ω)∗f(ω;θ)Ψ(ω)eitωdω

∥∥∥µ
E
<∞. (1.2.12)

1.3 Main Result

First the limit of functional form of periodogram is shown in the following theorem,
which is a generalization of 1-dimensional result.
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Theorem 1.3.1. Let (X(t))t∈Z be a linear process as defined in (1.1.1) with co-
efficient matrices (Ψ(j))j∈Z satisfying (1.2.9) and suppose that α ∈ (0, 2). Fur-
thermore, let ϕk(ω), j = 1, . . . , d, be d × d matrix-valued 2π-periodic continuous
function with ϕk(ω) = ϕk(ω)

∗ such that the Fourier coefficients of Ψ(·)ϕk(·)Ψ(·)∗
are absolutely summable and

∞∑
t=1

∥∥∥∫ π

−π

∂

∂θk
Ψ(ω)∗ϕk(ω)Ψ(ω)eitωdω

∥∥∥µ
E
<∞ (1.3.1)

for some µ ∈ (0, α) and all k = 1, · · · , q. Then

(n−2/α∥Z∥2N , xn
∫ π

−π

tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω)

L−→ (Sα/2,

d∑
i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) + A(ω))ij dω ), (1.3.2)

where
A(ω) = Ψ(ω)∗ϕk(ω)Ψ(ω)eihω,

and S(h)ij is the (i, j)-component of the limit stable random matrix S(h), where

xn Γ̂n,Z(h) ⇒ S(h) for h = 1, 2, . . . .

Theorem 1.3.2. Let (X(t))t∈Z be a linear process as defined in (1.1.1) with co-
efficient matrices (Ψ(j))j∈Z satisfying (1.2.9) and suppose that α ∈ [1, 2). Under
Assumptions 1.2.3 and 1.2.4, if

∂

∂θ

∫ π

−π

Ψ(ω)∗f(ω;θ)−1Ψ(ω) dω

∣∣∣∣
θ=θ0

= 0, (1.3.3)

we have

−2
x2n
n

logR(θ0)
L−→ V ′W−1V under H: θ = θ0,

where

V =
1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π

−π
(B1(ω) +B1(ω))ijdω∫ π

−π
(B2(ω) +B2(ω))ijdω

...∫ π

−π
(Bq(ω) +Bq(ω))ijdω,

 (1.3.4)

with

Bk(ω) = Ψ(ω)∗
∂

∂θk
f(ω;θ)−1Ψ(ω) k = 1, . . . , q,
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and the component of W is expressed as

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω, (1.3.5)

where g̃(ω) is defined as
g̃(ω) = Ψ(ω)ΣZ̃Ψ(ω)∗. (1.3.6)

Corollary 1.3.3. With the same assumptions and condition (1.3.3), we have

−2
x2n
n

logR(θ0)
L−→ V ′W−1V under H: θ = θ0,

where V is defined above and the component of W can be expressed as

Wab =
1

2πd2

∫ π

−π

(
tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω. (1.3.7)

1.3.1 Numerical Study

We consider the 2-dimemsional VAR(1) model:

X(t) + AX(t− 1) = Z(t), (1.3.8)

where the marginal distributions of {Z(t)} are assumed to be i.i.d. symmetric
α-stable variable with scale 1 for simplicity. The true coefficient matrix is given
by

A =

(
0.7 θ0
0.1 0.5

)
.

Like other methods, the parameter estimation is possible. First, we define the
fitted power transfer function f(ω;θ) corresponding to the estimating function as

f(ω;θ) = (I −Beiω)−1(I −Beiω)−1∗, where B =

(
0.7 θ
0.1 0.5

)
.

The numerical results in this case are given in Table 1.1.
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Table 1.1: 95% confidence intervals (and length) for true parameter. Sample size
is 500 and α = 1.7.

θ0 E.L (length)
case 1. 0 -0.1242 0.0692 (0.1934)
case 2. 0.5 0.4475 0.5425 (0.0950)
case 3. 0.6 0.0940 0.7607 (0.6667)

Figure 1.3: The confidence interval in case 1

Next, we examine the (1,1)-component of autocorrelation (See Brockwell and Davis
[1991] ), which is defined as

ρ11(l) = γ11(l)/γ11(0), l = 0, 1, . . . . (1.3.9)

The estimation of this quantity is equivalent to fit the power transfer function

(I −Be−ilω)(I −Beilω)′
−1
, (1.3.10)

where B has the form(
θ b
0 c

)
, where b and c are any constants. (See Appendix in this Chapter.)

The numerical results are given in Table 1.2.
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Table 1.2: 95% confidence intervals (and length) for true parameter. Sample size
is 2000 and α = 1.7.

l θ0 E.L (length)
case 4. 2 0.700 -0.3987 0.8037 (1.2024)
case 5. 3 0.590 -0.1299 0.8250 (0.9549)
case 6. 4 0.498 -0.5969 0.6759 (1.2728)

Another appealing example is to consider whether the wave structures of the
spectra between all components are ”close” to each other or not. For simplicity,
we formulate this idea in 2-dimensional case and assume the true power transfer
function g(ω) is

g(ω) =
1

2π

∞∑
k=−∞

R̃(k)e−ikω. (1.3.11)

Then the null hypothesis can be written as

H : R̃(k) = θ0R̃(j) or R̃(k) = θ0R̃(j)′ for some k and j.

To test this hypothesis, we set the estimating function m(λt;θ) with an inverse
correlation function f(λt;θ)

−1, which was first introduced in Cleveland (1972),
and deeply discussed by Bhansali (1980). Let

f(ω; θ)−1 = (ekω + e−kω)

(
θ 0
0 θ

)
+ (ejω + e−jω)

(
1
2
θ2 0
0 1

2
θ2

)
. (1.3.12)

Then under the hypothesis, we have

∂

∂θ

∫ π

−π

Ψ(ω)∗f(ω;θ)−1Ψ(ω) dω

∣∣∣∣
θ=θ0

= 0, (1.3.13)

which satisfies the assumption in Theorem 1.3.2.

1.3.2 Proof of Theorem 4.1

First, we derive the asymptotics of Pn(θ0) and Sn(θ0).

Lemma 1.3.4. Suppose {X(t)}∞t=0 is generated by (1.1.1) satisfying (1.2.9). Then

In,X(ω) = Ψ(ω)In,Z(ω)Ψ(ω)∗ +Rn(ω). (1.3.14)

If ϕ(ω) is a d× d matrix-valued continuous function on [−π, π ], then

xn

∫ π

−π

tr[Rn(ω)ϕ(ω) ]dω
P−→ 0. (1.3.15)
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Proof. We follow the proof of the univariate case in Mikosch et al. (1995).

dn,X(ω) = n−1/α

n∑
t=1

X(t)eiωt = n−1/α

n∑
t=1

eiωt(
∞∑
j=0

Ψ(j)Z(t− j))

= Ψ(ω)dn,Z(ω) + n−1/α

∞∑
j=0

Ψ(j)eijωYn,j(ω),

= Jn,Z(ω) + n−1/αYn(ω) (say),

where

Yn,j(ω) =

n−j∑
t=1−j

Z(t)eiωt −
n∑

t=1

Z(t)eiωt. (1.3.16)

Then we have

Rn(ω) = n−1/αYn(ω)Jn,Z(ω)
∗ + n−1/αJn,Z(ω)Yn(ω)

∗ + n−2/αYn(ω)Yn(ω)
∗.

(1.3.17)∑∞
j=0Ψ(j)eijω ≤

∑∞
j=0∥Ψ(j)∥ < ∞, so that ∥Ψ(ω)∥ is stochastically bounded.

Since every element of Z(t) is in the domain of attraction of a stable law with
a parameter α, Jn,Z(ω) is also stochastically bounded. As results in the proof of
lemma 6.2 in Mikosch et al. (1995), we know that for each l ∈ 1, 2, . . . , d,

∞∑
j=0

Ψ(j)kle
ijωYn,j(ω)l = Op(1) (1.3.18)

and ∫ π

−π

n−2/α|
∞∑
j=0

Ψ(j)kle
ijωYn,j(ω)l|2dω = op(x

−2
n ). (1.3.19)

Combining these two results, it is easy to see that Yn(ω) = Op(1), and by the
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boundedness of ϕ(ω),

xn

∣∣∣∫ π

−π

tr[Rn(ω)ϕ(ω)] dω
∣∣∣ ≤ xn

∫ π

−π

|tr[Rn(ω)ϕ(ω) ]| dω

≤ xn

∫ π

−π

∥Rn(ω)∥E∥ϕ(ω)∥E dω

≤ c1xn

∫ π

−π

∥n−1/αYn(ω)Jn,Z(ω)
∗∥E + ∥n−1/αJn,Z(ω)Yn(ω)

∗∥E

+∥n−2/αYn,Z(ω)Yn,Z(ω)
∗)∥E dω

≤ c2xn

{(∫ π

−π

∥In,Z(ω)∥2E dω
)1/2(∫ π

−π

n−2/α∥Yn(ω)∥2E dω
)1/2

+

∫ π

−π

n−2/α∥Yn(ω)∥2E dω
}
.

P−→ 0.

Before looking into the asymptotics of Pn(θ0), we have to show the existence
of the limit matrix of the autocovariance matrix in distribution. If the components
of the vector Z are mutually independent, then we have the lemma due to Resnick
(1986) by applying continuous mapping theorem.

Suppose yn = (n log n)1/α. It is obvious that Z(1)k’s satisfy followings:

P (|Z(1)i| > x) = x−αL(x), i = 1, 2, . . . , d (1.3.20)

with α > 0 and L(x) a slowly varying function at ∞ and

P (Z(1)i > x)

P (|Z(1)i| > x)
→ p,

P (Z(1)i < −x)
P (|Z(1)i| > x)

→ q (1.3.21)

as x→ ∞, 0 ≤ p ≤ 1 and q = 1− p.

Lemma 1.3.5. Let {Z(t)} be a sequence of iid random vectors satisfying (B.9)
and (B.10) with 0 < α < 2 and E|Z(1)i|α = ∞ for all i = 1, 2, . . . , d. Then(

n−2/α

n∑
t=1

Z(t)Z(t)′, y−1
n

n∑
t=1

Z(t)Z(t+ 1)′, . . . , y−1
n

n∑
t=1

Z(t)Z(t+ h)′

)
⇒ (S(0), S(1), . . . , S(h)), (1.3.22)

where S(0), S(1), . . . , S(h) are independent stable random matrices; the compo-
nents of S(0) are all positive with index α/2, and S(1), . . . , S(h) are identically
distributed with index α.
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Proof of Theorem 1.3.1. From Lemma 1.3.5, we can see that(
n−2/αΓ̂n,Z(0), y

−1
n Γ̂n,Z(k), k = 1 . . . , h

)
⇒ (S(0), S(1), . . . , S(h)).

Note that tr Γ̂n,Z(0) = ∥Z∥2N , according to the continuous mapping theorem, the
statement holds true if we show

xn

∫ π

−π

tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω

L−→
d∑

i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) + A(ω))ij dω. (1.3.23)

From Lemma 1.3.4 and Lemma 1.4.1 in Appendix,

xn

∫ π

−π

tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω

= xn

∫ π

−π

tr
[
{Ψ(ω)In,Z(ω)Ψ(ω)∗ −Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗ +R(ω)}ϕk(ω)

]
dω

= xn

∫ π

−π

tr
[
{Ψ(ω)(In,Z(ω)− Γ̂n,Z(0))Ψ(ω)∗}ϕk(ω)

]
dω + xn

∫ π

−π

tr [R(ω)ϕk(ω) ] dω

= xn

∫ π

−π

tr

[(
n−1∑
h=1

Γ̂n,Z(h)e
−ihω

)
Ψ(ω)∗ϕk(ω)Ψ(ω)

]
dω

+ xn

∫ π

−π

tr

[(
n−1∑
h=1

Γ̂n,Z(h)
′eihω

)
Ψ(ω)∗ϕk(ω)Ψ(ω)

]
dω + op(1)

= xn

∫ π

−π

d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[
e−ihωΨ(−ω)∗ϕk(−ω)Ψ(−ω)

]
ij
dω

+

∫ π

−π

d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[ eihωΨ(ω)∗ϕk(ω)Ψ(ω) ]ij dω


L−→

d∑
i,j=1

∞∑
h=1

S(h)ij

∫ π

−π

(A(ω) + A(ω))ij dω.

Remark 1.3.6. The last result of convergence is due to Lemma 1.4.1, which
guarantees the tightness of the convergency.
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Remark 1.3.7. The assumption of independence on the components of Z(t) is
for simplicity and for simulation. The condition of regular variation on the vector
case is crucial for the convergence of Z(t) with some other technical conditions.
For detail, we recommend to refer to Bartkiewicz et al. (2010).

From the definition, we have

n∑
t=1

d∑
i=1

Z̃(t)2i = 1 almost surely, (1.3.24)

which shows the second moment of Z̃(t) is finite. By the properties that the
components of vectors are mutually independent and they are symmetry around
0, we assume generally

E
[
Z̃(t)iZ̃(s)i

]
= ΣZ̃ =

{
σij

n
, if t = s,

0 if t ̸= s.
(1.3.25)

This is not a special case since we have the following example:

Example 1 (Case that the correlation between all elements of Z(t) is 1). As-
sume that the marginal distributions Z(t)j of Z(t) are independent symmetric
α-stable distributions with different scales σj. Then since the sum of all marginal
distribution

∑n
j=1 Z(t)j has the same distribution, we can see that

E
d∑

i=1

Z̃(t)2i =
1

n
. (1.3.26)

Also, according to the different scale, we can write Z(t)j = σjZ
′(t)j where all

Z ′(t)j are stable with scale 1. Then we have

E
d∑

i=1

Z̃(t)2i = E
d∑

i=1

σ2
i Z̃

′(t)i =
1

n
, (1.3.27)

which is followed by

E Z̃ ′(t)i =
1

n

(
d∑

i=1

σ2
i

)−1

. (1.3.28)

Accordingly, we have

E(Z̃(t)iZ̃(t)j) =
1

n

σiσj∑d
i=1 σ

2
i

. (1.3.29)

The representation (1.3.23) is just a generation of this idea.
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Lemma 1.3.8. Assume the covariance matrix of self-normalized process {Z̃} is
given by ΣZ̃. If α ∈ [1, 2), then

(n−2/α∥Z∥2N)−2Sn(θ0)
P−→ W , (1.3.30)

where the (a, b)-component of W satisfies

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω,

(1.3.31)

where g̃(ω) is defined as
g̃(ω) = Ψ(ω)ΣZ̃Ψ(ω)∗. (1.3.32)

Proof. Apply the decomposition in Lemma 1.3.4 again, we have

In,X(ω) = Ψ(ω)In,Z(ω)Ψ(ω)∗ +Rn(ω). (1.3.33)

Using self-normalized form, we can see that

In,X̃(ω) ≡ (n−2/α∥Z∥2N)−2In,X(ω) = Ψ(ω)In,Z̃(ω)Ψ(ω)∗ +Rn(ω). (1.3.34)

Taking the expectation of the product of periodogram of Z̃, we obtain

E(In,Z̃(λ1)pqIn,Z̃(λ2)rs)

= E

( ∑
m,l,k,j

Z̃p(m)Z̃q(l)Z̃r(k)Z̃s(j) exp{ i((j − k)λ1 − (l −m)λ2)t}

)

=

{
σpqσrs + σprσqs + op(1) if λ1 = λ2,

σpqσrs + σpsσqr + op(1) if λ1 = −λ2.
(1.3.35)

Therefore, if we write g(λ)ab = (
∑n

j=0 Ψ(j)e−ijλ)ab, then

lim
n→∞

E(In,X̃(λt)pqIn,X̃(λt)rs) =
∑

k,l,m,n

g(λt)pkgql(λt)grm(λt)gsn(λt)(σpqσrs + σprσqs)

= g̃(ω)pqg̃(ω)rs + g̃(ω)prg̃(ω)qs.
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If α ∈ [1, 2), we can write Sn(θ0) in the integral form, i.e.

E[Sn(θ0)ab ]

=
1

2π

{∫ π

−π

d∑
β1,β2,β3,β4=1

g̃(ω)β1β2 g̃(ω)β3β4

∂f(ω;θ)β2β1

∂θa

∣∣∣∣
θ=θ0

∂f(ω;θ)β4β3

∂θb

∣∣∣∣
θ=θ0

dω

+

∫ π

−π

d∑
β1,β2,β3,β4=1

g̃(ω)β1β3 g̃(ω)β2β4

∂f(ω;θ)β2β1

∂θa

∣∣∣∣
θ=θ0

∂f(ω;θ)β4β3

∂θb

∣∣∣∣
θ=θ0

dω
}
.

(1.3.36)

In other words,

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω.

(1.3.37)

The convergence in probability is guaranteed by the result that∑
k ̸=l

Cov(In,Z̃(λk)
2
pq, In,Z̃(λl)

2
rs) = O(n). (1.3.38)

Corollary 1.3.9. If all elements of Z(t) are i.i.d symmetric α stable random
variables, then

(n−2/α∥Z∥2N)−2Sn(θ0)
P−→ W , (1.3.39)

where the (a, b)-component of W is

Wab =
1

2πd2

∫ π

−π

(
tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]

+tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω.

(1.3.40)
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Proof of Theorem 1.3.2. First, we will derive the asymptotic distribution of the
empirical likelihood ratio. For convenience, we set p = (p1, . . . , pn). Introducing
Lagrange multiplier L(p,ϕ, k),

L(p,ϕ, k) =
n∑

t=1

log(npt)− nϕ′
n∑

t=1

ptm(λt;θ0) + k

(
n∑

t=1

pt − 1

)
. (1.3.41)

Differentiating L(p,ϕ, k) with respect to all parameters, we have equations:

pt =
1

n

1

1 + ϕ′m(λt;θ0)
, (1.3.42)

where ϕ satisfies

1

n

n∑
t=1

m(λt;θ0)

1 + ϕ′m(λt;θ0)
= 0. (1.3.43)

If we write
Yt = ϕ′m(λt;θ0), (1.3.44)

then we have
npt = (1 + Yt)

−1, (1.3.45)

and from (1.3.43)

ϕ = Sn(θ0)
−1

{
1

n

n∑
t=1

m(λt;θ0)

}
+ ϵ, (1.3.46)

where

ϵ =
1

n

n∑
t=1

m(λt;θ0)Y
2
t

1 + Yt
, (1.3.47)

since
1

1 + Yt
= 1− Yt +

Y 2
t

1 + Yt
. (1.3.48)

Thus the empirical likelihood ratio can be decomposed like

−2 logR(θ0) = 2
n∑

t=1

log(1 + Yt)

= 2
n∑

t=1

Yt −
n∑

t=1

Y 2
t +

n∑
t=1

Op(Y
3
t )

= nPn(θ0)
′Sn(θ0)

−1Pn(θ0)− nϵ′Sn(θ0)ϵ+
n∑

t=1

Op(Y
3
t ).

(1.3.49)
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To guarantee the order of convergence, we must control the order of ϵ and Y 3
t

simultaneously. Fortunately, we can keep them converge to 0 in probability in the
stable case as well as in the usual regular case.

To give an clear overview, we define an order in the probability order notation.
If Op(An)/Op(Bn) → op(1), then we say An convergences to 0 in probability faster
than Bn. It is denoted by

min(Op(An), Op(Bn)) = Op(An) or Op(An) ≤ Op(Bn). (1.3.50)

If Op(An)/Op(Bn) → Op(1), then we say that An is equivalent to Bn in the order
sense.

Define Zn = max1≤k≤nm(λt;θ0). Then it is easy to see that

Zn ≤ max
1≤k≤n

∥∥∥ ∂
∂θ

tr{f(λt;θ0)
−1In(λt)}

∥∥∥ ≤ C sup
i,j

ω∈[−π,π]

|In(ω)ij|. (1.3.51)

Then from (1.3.46), we have

Op(∥ϕ∥)(Op(∥Sn(θ0)∥)−Op(Zn)Op(∥Pn(θ0)∥)) ≤ ∥Pn(θ0)∥. (1.3.52)

From (1.3.47), this leads us to the order of ϵ,

∥ϵ∥ ≤ ∥Zn∥∥Sn(θ0)∥∥ϕ∥2|1 + Yt|−1 = Op(∥Zn∥)Op(∥Sn(θ0)∥)Op(∥ϕ∥2)
= min(Op(Zn)Op(∥Sn(θ0)

−1∥)Op(∥Pn(θ0)∥2), Op(Z
−1
n )Op(Sn(θ0)))

(1.3.53)

In the regular case, we can see that

Op(∥Sn(θ0)∥) = Op(∥Sn(θ0)∥−1) = Op(1). (1.3.54)

Then

min(Op(Zn)Op(∥Sn(θ0)
−1∥)Op(∥Pn(θ0)∥2), Op(Z

−1
n )Op(Sn(θ0)))

= Op(Zn)Op(∥Pn(θ0)∥2) (1.3.55)

from LIL and CLT. Thus the order of ∥ϵ∥ is

∥ϵ∥ = Op(n
−1 log n) (1.3.56)

since

Op(Zn) = Op(log n) (1.3.57)

Op(∥Pn(θ0)∥) = Op(n
−1/2). (1.3.58)
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In the stable case, defining the statistic well seems a little crucial. In this paper,
the order of the statistic Sn(θ0) is Op(1). As shown in Mikosch and Samorodnitsky
[2000], if α ̸= 1,

Op(Zn) = Op((log n)
2−2/α) (1.3.59)

Op(∥Pn(θ0)∥) = Op((log n/n)
1/α), (1.3.60)

which is followed by
∥ϕ∥ = Op((log n/n)

1/α). (1.3.61)

Therefore
∥ϵ∥ = Op((log n)

2n−2/α). (1.3.62)

In both cases, we can simplify the notation, that is,

∥ϵ∥ = op(1). (1.3.63)

Last, we investigate the third term in (1.3.49). From (1.3.44), it is easy to see
that

|Yt|3 ≤ ∥ϕ∥3∥m(λt;θ0)∥3 = Op((log n)
2+1/αn−3/α) (1.3.64)

Now, multiplying true order x2n/n to the empirical likelihood ratio in (1.3.49),
the orders of the last two terms in the right hand side are Op((log n)

4−2/αn−2/α)
and Op((log)

2−1/αn−1/α) respectively, and thus op(1).
Apply Theorem 1.3.1 to xnPn(θ0), we can see that

xnPn(θ0) =
xn
2π

∫ π

−π

∂

∂θ
tr
[
f(ω;θ)−1In,X(ω)

]
dω
∣∣∣
θ=θ0

=
xn
2π

∫ π

−π

∂

∂θ
tr
[
f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}

]
dω
∣∣∣
θ=θ0

=
xn
2π



∫ π

−π
tr
[

∂
∂θ1

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0∫ π

−π
tr
[

∂
∂θ2

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0

...∫ π

−π
tr
[

∂
∂θq

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0



L−→ 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij


∫ π

−π
(B1(ω) +B1(ω))ijdω∫ π

−π
(B2(ω) +B2(ω))ijdω

...∫ π

−π
(Bq(ω) + Bq(ω))ijdω.


where

Bk(ω) = Ψ(ω)∗
∂

∂θk
f(ω;θ)−1Ψ(ω) k = 1, . . . , q.
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Remember that
n−2/α∥Z∥2N

L−→ Sα/2, (1.3.65)

xnPn(θ0)

n−2/α∥Z∥2N
L−→ 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π

−π
(B1(ω) +B1(ω))ijdω∫ π

−π
(B2(ω) +B2(ω))ijdω

. . .∫ π

−π
(Bq(ω) +Bq(ω))ijdω

 . (1.3.66)

Thus the limit of −2x2
n

n
logR(θ0) is

−2
x2n
n

logR(θ0)
L−→ V ′W−1V ,

where

V =
1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π

−π
(B1(ω) +B1(ω))ijdω∫ π

−π
(B2(ω) +B2(ω))ijdω

. . .∫ π

−π
(Bq(ω) +Bq(ω))ijdω,

 (1.3.67)

and the (a, b)-element of W is represented in the Theorem 1.3.1.

1.4 Appendix

1.4.1 Tightness

Lemma 1.4.1 (Klüppelberg and Mikosch (1996)). Suppose {Zt}1≤t≤n is a se-
quence of iid symmetric α-stable random variables for α ∈ (0, 2). Let ft be real
numbers such that

∞∑
t=−∞

|ft|µ <∞ (1.4.1)

for some µ < α. If f0 = 0, then

(γ2n,Z , y
−1
n

∑
1≤t,s≤n

ft−sZtZs) →d (Y0, Z1(
∞∑
t=1

|ft + f−t|α)1/α). (1.4.2)

If f0 ̸= 0, then

n−2/α
∑

1≤t,s≤n

ft−sZtZs →d f0Y0. (1.4.3)
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1.4.2 Regularly Varying Tail

Definition 1.4.2. A distribution F has exponential tails with rate α > 0, if

lim
t→∞

F̄ (t− u)

F̄ (t)
= eαu for all real u. (1.4.4)

It is denoted by F ∈ Lα.

The definition is equivalent to the definition of regularly varying tail, if one put
log t and log u into the definition above. To guarantee ∥Z∥2N is in the domain of
attraction of a stable limit with α/2, we have the Theorem below.

Theorem 1.4.3 (Embrechts and Goldie (1980, Theorem 3)). If both F ∈ Lα,
G ∈ Lα, then H = F ∗G ∈ Lα.

Remark 1.4.4. Regularly varying tail is necessary and sufficient condition for a
sequence of i.i.d random variables or random vectors in the domain of attraction
of a stable law.

1.4.3 Estimation of autocorrelation

To estimate Γ(0)−1Γ(j), we can see the problem as a fitting problem, i.e. fit the
spectral whose inverse is

(I −Θe−ijω)(I −Θ′eijω). (1.4.5)

Then the pivotal value satisfies

∂

∂Θ

∫ π

−π

(I −Θe−ijω)(I −Θ′eijω)g(ω) dω|θ=θ0 = 0. (1.4.6)

In fact, using formula

∂

∂Θ
tr(Θg(ω)) = Θ′g(ω) (1.4.7)

∂

∂Θ
tr(ΘΘ′g(ω)) = g(ω)Θ + g(ω)Θ′, (1.4.8)

we have
Γ(0)Θ0 = Γ(j) (1.4.9)

by Herglotz’s spectral representation theorem. That is

Γ(j) =

∫ π

−π

eijω dF (ω). (1.4.10)

Thus we have
Θ0 = Γ(0)−1Γ(j). (1.4.11)

Also, we can extend this full autocorrelation case to any one element case in the
same way. (See Numerical Study above.)
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1.4.4 Program

As an example, the program with the true θ0 = 0 is given below. ”− ” shows the
code depending on the program.

Clear["Global‘*"]

Combine[P__] := MapThread[List, {P}];

varfil[P__] := Reverse[{P}];

order[P__] := Length[varfil[P]];

innov[s_, P__] := Join[ConstantArray[0, {order[P] - 1, 2}], s];

VAR[s_, P__] := (Clear[X]; X = {s[[1]]}; X = innov[X, P];

For[i = 1, i < Length[s], i++,

X = Append[X,

Total[MapThread[Dot, {varfil[P], Take[X, {i, i + order[P] - 1}]}]] +

s[[i + 1]]]]; Drop[X, order[P] - 1])

T = 300;

z1 = RandomVariate[StableDistribution[1, 1.5, 0, 0, 1], T];

z2 = RandomVariate[StableDistribution[1, 1.5, 0, 0, 1], T];

z = Combine[z1, z2];

A = {{0.7, 0}, {0.1, 0.5}};

Eigenvalues[A]

VAR[z, A];

d = Length[X[[1]]];

l = 1;

e[r_, n_] := Table[E^(2 Pi I (r - 1) (s - 1)/T), {s, 1, n}]

Periodogram[x_, r_, a_] :=

T^(-2/a) Outer[Times, e[r, T].N[x], Conjugate[e[r, T].N[x]]]

filter[P__] := -{-IdentityMatrix[d], P}

fitar[P__, r_] := (F = filter[P];

Transpose[Total[MapThread[Times, {F, Conjugate[e[r, Length[F]]]}]]].Total[

MapThread[Times, {F, e[r, Length[F]]}]])

M[x_, P_, r_, a_] := D[Tr[fitar[P, r].Periodogram[x, r, a]], t1]

MList[x_, P_, tr_, a_] := Chop[Table[M[x, P, r, a], {r, 1, T}] /. {t1 -> tr}]

B = {{0.7, t1}, {0.1, 0.5}}

ec[w_, n_] := Table[E^(I (s - 1) w), {s, 1, n}]

Spectral[x_, P__] := (G = filter[P];

Inverse[

Transpose[Total[MapThread[Times, {G, ec[-x, Length[G]]}]]].Total[

MapThread[Times, {G, ec[x, Length[G]]}]]])

InvSpectral[x_, P__] := (G = filter[P];

Transpose[Total[MapThread[Times, {G, ec[-x, Length[G]]}]]].Total[
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MapThread[Times, {G, ec[x, Length[G]]}]])

tr = Chop[

t1 /. (FindRoot[

D[Integrate[Tr[InvSpectral[x, B].Spectral[x, A]], {x, -Pi, Pi}], t1] ==

0, {t1, 0.701}])[[1]]]

Mtrue = MList[X, B, tr, 1.5];

p = Total[Mtrue]/T

q = Total[Mtrue^2]/T

R = (T/Log[T])^(2/1.5) (p^2/q)

w13 = Simplify[(D[InvSpectral[x, B], t1] /. {t1 -> tr})].Spectral[x, A];

w = Integrate[Tr[w13.w13] + Tr[w13] Tr[w13], {x, -Pi, Pi}]/(2 Pi)

v := Tr[w13]

VB[a_] := (k = 1; S = -1; s = 1;

While[(s > S/1000 || s == 0) && k < 20, S = S + s;

s = Abs[Integrate[v Cos[k x], {x, -Pi, Pi}]]^(a); Print[s]; k++]; S)

V[a_] := (VB[a])^(1/a)/Pi

ko[a_] := If[a == 1, 2/Pi, (1 - a)/(Gamma[2 - a] Cos[Pi a/2])];

Y0[a_] := StableDistribution[a/2, 1, 0, (ko[a/2])^(-2/a)];

Z0[a_] := StableDistribution[a, 0, 0, (ko[a])^(-1/a)];

Quant = Quantile[(RandomVariate[Z0[1.5], 10000]/

RandomVariate[Y0[1.5], 10000])^2, 0.90]

Val = V[1.5]

confi = Quant Val^2/w

{0, confi}

g1 = Plot[{(T/Log[T])^(2/

1.5) ((Total[MList[X, B, t, 1.5]]/T)^2/(Total[MList[X, B, t, 1.5]^2]/

T)), confi}, {t, -1, 1}]

FindRoot[(T/Log[T])^(2/

1.5) ((Total[MList[X, B, t, 1.5]]/T)^2/(Total[MList[X, B, t, 1.5]^2]/

T)) == confi, {t, 0.1}]

FindRoot[(T/Log[T])^(2/

1.5) ((Total[MList[X, B, t, 1.5]]/T)^2/(Total[MList[X, B, t, 1.5]^2]/

T)) == confi, {t, -0.2}]

Show[g1, PlotRange -> {{-0.1, 0.1}, {0, 1}}]

a = Chop[t /. %---[[1]]]

b = Chop[t /. %---[[1]]]

b - a
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Chapter 2

Asymptotic Moments of the
Self-normalized Sum

Abstract

We give a general and explicit formula for the moments of the limiting distribu-
tion of symmetric self-nomalized sum of i.i.d random variables, which belong to
the domain of attraction of a stable law. The result shows that the finite order
moments for symmetric self-normalized sums are always finite. As an application,
tail index can be estimated through our result by using moment estimators.

2.1 Introduction and preliminaries

The self-normalized method has been focused on in these two decades, and many
interesting results are obtained. (See Logan et al. [1973], Griffin and Mason [1991],
Klüppelberg and Mikosch [1996], Peña et al. [2009].) In this paper, we extend the
result for the moments of symmetric self-normalized sum in Logan et al. [1973] to
a more explicit one.

Consider a sequence {Xi}i=1,...,n that Xi’s are assumed to be independent and
identically distributed and belong to the domain of attraction of a stable law G,
the parameter of attracting stable law G is denoted by α. More specifically, we
assume that the density function g of the stable distribution G satisfies

xα+1g(x) → r, xα+1g(−x) → l, (2.1.1)

where 0 < α < 2, r + l > 0. Also Un and V p
n are defined as

Un =
X1 + · · ·+Xn

n1/α
(2.1.2)
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and

V 2
n =

|X1|2 + · · ·+ |Xn|2

n2/α
. (2.1.3)

To have the limiting distribution of Sn(2) (= Un/Vn) exist, we further assume that

EXi = 0 if 1 < α < 2. (2.1.4)

The limiting distribution of Sn(2) is denoted by S(2).
It is shown in Logan et al. [1973] that if α ̸= 1, the moments of S(2) can be

derived from
1

π

∫ ∞

0

φ(t)e−st dt =

∫ ∞

0

e−s2t2/2D(t) dt, (2.1.5)

where
φ(t) = EeiS(2)t = lim

n→∞
EeiSn(2)t, (2.1.6)

the characteristic function of the limiting distribution of S(2), and

D(t) = (1− α)(2π−3)1/2
rDα−2(−it) + lDα−2(it)

rDα(−it) + lDα(it)
, (2.1.7)

Dν(z) (z ∈ C) is the parabolic cylinder functions. (See Magnus and Oberhettinger
[1954].) Here are two important properties of parabolic cylinder functions for
calculation.

d

dz
Dν(z)−

z

2
Dν(z) +Dν+1(z) = 0; (2.1.8)

d

dz
Dν(z) +

z

2
Dν(z)− νDν−1(z) = 0. (2.1.9)

The calculation of the moments depends on the expansion of (2.1.5). We first
decompose the left hand side into the form of power series.

1

π

∫ ∞

0

φ(t)e−st dt =
1

π

∫ ∞

0

∞∑
k=0

φ(k)(0)

k!
tke−st dt

=
∞∑
k=0

φ(k)(0)

k!

1

π

∫ ∞

0

tke−st dt

=
∞∑
k=0

1

π
φ(k)(0)s−k−1. (2.1.10)
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Secondly, the right hand side of (2.1.5) can be written as follows.∫ ∞

0

e−s2t2/2D(t)dt =
∞∑
k=0

D(k)(0)

k!

∫ ∞

0

e−s2t2/2tk dt

=
∞∑
k=0

D(k)(0)

k!

∫ ∞

0

e−u

(
2u

s2

) k
2

· 1

s
√
2u

du

=
∞∑
k=0

D(k)(0)

k!
2

k−1
2 Γ(

k + 1

2
)s−k−1. (2.1.11)

Equating coefficients of like powers of s−1 in (2.1.10) and (2.1.11), we can see that

E(S(2)k) = ikφ(k)(0) =
D(k)(0)

k!
2

k−1
2 Γ(

k + 1

2
)π. (2.1.12)

The main purpose of this paper is to derive a general and explicit formula to
calculate the moments of the distribution S(2) when r = l.

2.2 The Main result

We assume Xi’s are symmetric, i.e., r = l, then D(t) becomes

D(t) = (1− α)(2π−3)1/2
Dα−2(−it) +Dα−2(it)

Dα(−it) +Dα(it)
≡ (1− α)(2π−3)1/2A(t). (2.2.1)

For symmetry case, we simplify the notation of the limiting distribution S(2) by
S.

Theorem 2.2.1. Let S be defined above. Then for any m = 1, 2, . . . , E(S2m−1) =
0 and

E(S2m) =
(2m− 1)!!

(2m)!
2{(D(2m)

α−2 (0)−D(2m)
α (0))−(1−α)

m−1∑
k=0

(−1)m−kA(2k)(0)

(2(m− k))!!(2k)!
D2(m−k)

α (0)},

(2.2.2)
where A(2k)(0) satisfies A(0) = Dα−2(0)/Dα(0) and

A(2k)(0) =
(−1)k

1− α
2(D

(2k)
α−2(0)−D(2k)

α (0))−2
k−1∑
l=0

A(2l)(0)

(2(k − l))!!(2l)!
(−1)(k−l)D2(k−l)

α (0)}.

(2.2.3)
Furthermore, suppose

D(2k)
ν (0) = η0(k) +

k∑
j=1

ηj(k)νj, (2.2.4)
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then ηj(k) satisfies

ηj(k) = −
∑k−j

t=0

(
k−t
j

)
νk−t(k − 1) + 2k−1

2
ηj(k − 1) for j ≥ 0;

ν1(k) = k!
(
(−1)k +

∑k
l=1

(2l−1)!!(−1)k−l

2ll!

)
;

νj(k) = −
∑k−j+2

l=1
(2k−1)!!

(2k−(2l−1))!!2l−1ν
j−1(k − l)− kνj(k − 1) for j ≥ 2;

ν1(0) = 1, νj(0) = 0 for j ≥ 2; ν0(k) = 0 for any k ≥ 0;

ηj(k) = 0 for j > k; ηk(k) = (−1)k for any k ≥ 0.

(2.2.5)

Corollary 2.2.2. The finite order moments for self-normalized sum of i.i.d random
variables in the domain of attraction of a stable law are always finite.

2.3 Proof of Theorem 2.2.1

Set
Aν(t) = Dν(−it) +Dν(it), (2.3.1)

then

A(t) =
Dα−2(−it) +Dα−2(it)

Dα(−it) +Dα(it)
=
Aα−2(t)

Aα(t)
. (2.3.2)

From (2.1.12), the moment of the limiting distribution can be simply written as

E(Sk) =
(k − 1)!!

k!
ik(1− α)A(k)(0). (2.3.3)

Note that d
dt
Dν(−it) = −i d

dz
Dν(z)

∣∣∣
z=−it

and d
dt
Dν(it) = i d

dz
Dν(z)

∣∣∣
z=it

, it is

obvious that

Ak(ν) ≡
dk

dtk
Aν(t)

∣∣∣
t=0

=

{
0 if k is odd;

(−1)k/22D
(k)
ν (0), if k is even,

(2.3.4)

where D
(k)
ν (0) = dk

dzk
Dν(z)

∣∣∣
z=0

. To prove the first statement, we use a recursive

formula for nth derivative.

Lemma 2.3.1 (Xenophontos [2007]).(
u(x)

v(x)

)(n)

=
1

v(x)

(
u(n)(x)− n!

n∑
j=1

v(x)(n+1−j)

(n+ 1− j)!(j − 1)!

(
u(x)

v(x)

)(j−1)
)
. (2.3.5)
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Applying the formula to the case that u(x) = Aα−2(x) and v(x) = Aα(x), we
have

A(2k)(0) =
1

1− α
(A2k(α− 2)− A2k(α))−

k−1∑
l=0

(
2k

2l

)
A2(k−l)(α)A(2l)(0). (2.3.6)

The first result is straightforward from (2.3.3).
Next, we show the second half of Theorem 2.2.1. Differentiating (2.1.8) and

(A.14) iteratively, we have

D(k)
ν (z)− z

2
D(k−1)

ν (z)− k − 1

2
D(k−2)

ν (z) +D
(k−1)
ν+1 (z) = 0; (2.3.7)

D(k)
ν (z) +

z

2
D(k−1)

ν (z) +
k − 1

2
D(k−2)

ν (z)− νD
(k−1)
ν−1 (z) = 0. (2.3.8)

Thus D
(k)
ν (0) can be derived from

D(k)
ν (0) =

k − 1

2
D(k−2)

ν (0)−D
(k−1)
ν+1 (0); (2.3.9)

D(k)
ν (0) = −k − 1

2
D(k−2)

ν (0) + νD
(k−1)
ν−1 (0). (2.3.10)

In the case when k is odd, rewrite 2k + 1 as k, then

D(2k+1)
ν (0) = −kD(2k−1)

ν (0) + ν(
2k − 1

2
D

(2k−2)
ν−1 (0)−D(2k−1)

ν (0))

= −kD(2k−1)
ν (0)− ν

k∑
l=1

(2k − 1)!!

(2k − 2l + 1)!!2l−1
D(2k−2l+1)

ν (0) + ν
(2k − 1)!!

2k
Dν−1(0).

This is a recurrence formula for D
(2k+1)
ν (0). If we can expand it, then it must be

the product of a polynomial of ν and Dν−1(0). Let ν
j(k) denote the coefficient of

νj in the case of (2k + 1)th derivative.
For the initial values, we can see that ν1(0) = 1, νj(0) = 0 for all j ≥ 2 and

ν0(k) = 0 for all k ≥ 0 from (A.14). After some painful calculation, we have

ν1(k) = k!

(
(−1)k +

k∑
l=1

(2l − 1)!!(−1)k−l

2ll!

)
; (2.3.11)

νj(k) = −
k−j+2∑
l=1

(2k − 1)!!

(2k − (2l − 1))!!2l−1
νj−1(k − l)− kνj(k − 1) for j ≥ 2.(2.3.12)

From the recurrence formula, one can see that the highest degree of the polyno-
mial is k+1, which can be shown by the induction. Using this property reversely,
one also can see that νj(k) = 0 for any j and k satisfying j ≥ k + 2.
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Corollary 2.3.2.

νk+1(k) = (−1)k, νk(k) = (−1)k
k

2
. (2.3.13)

Proof. Applying this result to (2.3.12),

νk+1(k) = −νk(k − 1) (2.3.14)

holds, and since the initial value ν1(0) = 1, we have

νk+1(k) = (−1)k. (2.3.15)

Also applying the result to νk(k),

νk(k) = −νk−1(k − 1)− 1

2
, (2.3.16)

which implies

νk(k) = (−1)k
k

2
, (2.3.17)

since ν0(0) = 0.

On the other hand, when k is even, rewrite 2k + 2 as k and we have

D(2k+2)
ν (0) =

2k + 1

2
D(2k)

ν (0)−D
(2k+1)
ν+1 (0)

Here, let ηj(k) denote the coefficient of νj in the case of 2kth derivative. Then we
have

ηj(k) = −
k−j∑
t=0

(
k − t

j

)
νk−t(k − 1) +

2k − 1

2
ηj(k − 1) for j ≥ 0. (2.3.18)

From (2.3.15), ηj(k) = 0 if j > k and ηk(k) = −νk(k − 1) = (−1)k.

2.4 Examples

2.4.1 Mathematica code

This section provides Mathematica code. The functions f(j, k) and g(j, k) denote
the function νj(k) and ηj(k) in the previous section, respectively. The function
A(n, a) is corresponding to 1/2 A2n(α), while CA(n, a) represents the function
A(2n)(0) above. Lastly, function M(n, a) indicates the 2nth moment of the limit
distribution S.
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f[1, k_] :=

k! ((-1)^k + Sum[(2 l - 1)!! (-1)^(k - l)/(2^l l!), {l, 1, k}]);

f[j_, k_] :=

If[j == 0, 0,

If[k <= -1, 0,

If[k > -1 && j >= 2,

-(2 k - 1)!! Sum[

f[j - 1, k - l]/((2 k - (2 l - 1))!! 2^(l - 1)), {l, 1, k - j + 2}]

- k f[j, k - 1]]]];

g[j_, k_] :=

If[j > k, 0,

If[j == k, (-1)^k,

If[k > 0, -Sum[

Binomial[k - t, j] f[k - t, k - 1], {t, 0, k - j}] + (2 k -

1) g[j, k - 1]/2, 0]]];

A[n_, a_] := (-1)^n g[0, n] + (-1)^n Sum[g[t, n] a^t, {t, 1, n}];

CA[n_, a_] :=

If[n > 0, (A[n, a - 2] - A[n, a])/(1 - a) -

Sum[CA[t, a] Binomial[2 n, 2 t] A[n - t, a], {t, 1, n - 1}], 0];

M[n_, a_] :=

Simplify[(2 n - 1)!!/(2 n)! (-1)^n (1 - a) CA[n, a], a > 0];

2.4.2 Some results and knowledge

Using the code above, we obtain the general result for the moments of symmetric
self-normalized moments and some special cases of α = 0.5, α = 1.5 and α = 2.

Table 2.1: The 2k(k = 1, . . . , 6) th moments of symmetric self-normalized sum for
the case of α = 0.5, 1.5, 2

k E(S2k) α = 0.5 α = 1.5 α = 2
1 1 1 1 1
2 1 + α 1.5 2.5 3
3 1 + 3α + 2α2 3 10 15
4 1/3(3 + 20α + 34α2 + 17α3) 7.875 55.625 105
5 1/3(3 + 40α + 130α2 + 155α3 + 62α4) 26.25 397.5 945
6 1/15(15 + 383α + 2118α2 + 4514α3 + 4146α4 + 1382α5) 106.838 3471.56 10395

When α = 2, the limiting distribution S is standard normal distribution. From
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Table 2.1, we can see the result is corresponding to the moments we can obtain
from other methods.

Hill’s estimator is proposed to be an estimator for tail index. As an alter-
native to it, we can apply the result above to the derivation of the tail index
after calculating the asymptotic moments for the self-normalized sums by moment
estimators.

Auxiliary results (1) ― A
(k)
ν (0)

Aν(0) =
Γ(1

2
)2

ν+2
2

Γ(1−ν
2
)

A(1)
ν (0) = 0

A(2)
ν (0) =

2ν + 1

2
Aν(0)(≡ A2(ν)Aν(0) )

A(3)
ν (0) = 0 ≡ A3(ν)

A(4)
ν (0) =

4ν2 + 4ν + 3

4
Aν(0)(≡ A4(ν)Aν(0) )

A(5)
ν (0) = 0 ≡ A5(ν)

A(6)
ν (0) =

8ν3 + 12ν2 + 34ν + 15

8
Aν(0)(≡ A6(ν)Aν(0) ).

Auxiliary results (2) ― A(k)(0)

A(0) =
Aα−2(0)

Aα(0)
=

1

1− α

A(1)(0) = 0

A(2)(0) = − 2

1− α

A(3)(0) = 0

A(4)(0) =
8α + 8

1− α

A(5)(0) = 0

A(6)(0) =
−96α2 − 144α− 48

1− α
.

33



Chapter 3

Rank-based Method

3.1 Introduction

3.1.1 ARMA model

The process {Xt; t ∈ Z} which satisfies

Xt −
p∑

i=1

aiXt−i = et +

q∑
i=1

biet−i for all t ∈ R,

are concerned in the paper. Denote the density function of et by f(x), and the
common distribution of (e1−q, . . . , e0;X1−p, . . . , Xn) by gn(·; θ), where θ ∈ Θ is the
underlying parameter.

Remark 3.1.1. One can see that

gn(·; θ) = g0(e1−q, . . . , e0;X0; θ)
n∏

t=1

f(et{e1−q, . . . , Xt}),

where

et{e1−q, . . . , Xt} =
t∑

k=1

βk−1

(
−

p∑
i=0

aiXt+1−k−i

)
+

q−1∑
s=0

e−s

(
s∑

k=0

βt+s−kbk

)
.

Remark 3.1.2. Using the representation of the common distribution above and
Lemma 2.2 in Appendix, we have

dPn,θ

dPn,θ0

=
g0(e1−q, . . . , X0; θ)

g0(e1−q, . . . , X0; θ0)

n∏
j=1

f(e0j − (θ − θ0)
′Z(j − 1; θ, θ0))

f(e0j)
.
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With the following additional abbreviation,

ϕ2
j(θ0, θ) =

f(ej(θ0)− (θ − θ0)
′Z(j − 1; θ, θ0))

f(ej(θ0))
,

we have

log
dPn,θ

dPn,θ0

= log
g0(e1−q, . . . , X0; θ)

g0(e1−q,...,X0 ; θ0)
+ 2

n∑
j=1

log ϕj(θ0, θ).

3.1.2 Assumptions

Assumption for stationary and invertibility and etc.

(S1) The polynomials A(z) = 1 +
∑p

i=1−aizi and B(z) = 1 +
∑q

i=1 biz
q have no

zeros with magnitude less or equal to one.

(S2) The two polynomials have no zeros in common and ap ̸= 0 or bq ̸= 0.

Assumptions for LAN

(A1) f(x) > 0, x ∈ R;
∫∞
−∞ xf(x) dx = 0;

∫∞
−∞ x2f(x) dx = σ2 <∞;

(A2) f is absolutely continuous on finite intervals, i.e., there exists ḟ such that for

all −∞ < a < b <∞, f(b)− f(a) =
∫ b

a
ḟ(x) dx;

(A3) letting ϕf ≡ − ḟ
f
, the generalized Fisher information

∫∞
−∞ ϕ2

f (x)f(x) dx ≡
If = σ−2If1 is finite.

(A4) the score function ϕf is piecewise Lipschitz, i.e., there exist a finite partition
of R into nonoverlapping intervals J1, . . . , Jk and a constant Af such that

|ϕf (x)− ϕf (y)| ≤ Af |x− y| ∀x, y ∈ Ji,∀i = 1, . . . , k.

3.1.3 Interpretation of the assumptions

(A1)—(A3) The LAN result holds under these assumptions;

(A4) This assumption induces that the influence of starting values on residual
autocorrelations is to be asymptotically negligible. In other words, it can be
shown that

Eθ|∆n(θ)− ∆̂n(θ) | = o(1)
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holds true, where

∆̂n(θ) :=
2√
n

n∑
j=1

φ̇(êj(θ))

j∑
k=1

βk−1

(
Y (j − k)

Ê(j − k; θ)

)
,

and

êt :=
t∑

k=1

βk−1(Xt+1−k − a1Xt−k − · · · − apXt+1−k−p).

3.2 Asymptotic Normality of Rank Statistics

3.2.1 Asymptotic Distribution of Likelihood Ratios

Under assumptions (A1)-(A4), we have the following results:

Proposition 3.2.1. Under H0,

logLn(X1, . . . , Xn) = L0
n(X1, . . . , Xn)−

d2

2
+ 0p,

where

L0
n(X) = n−1/2

n∑
t=p+1

ϕ(Xt)

p∑
i=1

diXt−i

di =


ai + bi 1 ≤ i ≤ min(p1, p2)

ai p2 < i ≤ p1 if p2 < p1

bi p1 < i ≤ p2 if p1 < p2

p = max(p1, p2) and d2 =
∑p

i=1 d
2
iσ

2I(f).

Moreover, L0
n

d−→ N (0, d2).

The form of this asymptotic distribution shows that, for n sufficiently large,
there will be little difference, from a statistical point of view, between AR, MA
and ARMA models!!

3.2.2 Asymptotic Distribution of Linear Serial Rank Statis-
tics

In the paper, the authors proposed the linear serial rank statistics for the models
as follows:

Sn =
1

n− p

n∑
t=p+1

an(R
(n)
t , R

(n)
t−1, . . . , R

(n)
t−p),
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mn = E[Sn|H(n)
0 ] =

1

n(n− 1) · · · (n− p)

∑
1≤i1 ̸=···≠ip+1≤n

an(i1, · · · , ip+1).

The authors established the asymptotic equivalence of (n − p)1/2(Sn −mn) with
Sn − En, where

Sn(X) = (n− p)−1/2

n∑
t=p+1

J(F (Xt), F (Xt−1), . . . , F (Xt−p))

En(X) =
(n− p)1/2

n(n− 1) · · · (n− p)

∑
1≤t1 ̸=···̸=tp+1≤n

J(F (Xt1), . . . , F (Xtp+1)).

It is also established that n−1/2(Sn−En) and n−1/2L0
n are asymptotically equivalent

to U-statistics.

Proposition 3.2.2. Under H0,(√
n(Sn −mn)
logLn

)
d−→ N

((
0

−1
2

∑p
i=1 d

2
iσ

2I(f)

)
,

(
V 2

∑p
i=1 diCi∑p

i=1 diCi

∑p
i=1 diσ

2I(f)

))
,

where

V 2 =

∫
[0,1]p+1

[ J∗(vp+1, · · · , v1) ]2dv1 · · · dvp+1

+ 2

p∑
j=1

∫
[0,1]p+1+j

J∗(vp+1, · · · , v1)J∗(vp+1+j, · · · , v1+j)dv1 · · · dvp+1+j (3.2.1)

and

Ci =

∫
[0,1]p+1

J∗(vp+1, · · · , v1)
p−i∑
j=0

ϕ(F−1(vp+1−j))F
−1(vp+1−j−i)dv1 · · · dvp+1

Proposition 3.2.3. Under H1,

√
n(Sn −mn)

d−→ N (

p∑
i=1

diCi, V
2).

3.2.3 Asymptotic Efficiency of Linear Serial Rank Statis-
tics

Proposition 3.2.4. An asymptotically optimal linear serial rank test for H0 against
Hd is provided by any statistic Sd

n with score-generating function (up to additive
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and multiplicative constants) given by

Jd(vp+1, · · · , v1) =
p∑

i=1

di
p+ 1− i

p−i∑
j=0

ϕ(F−1(vp+1−j))F
−1(vp+1−j−i).

Under Hh(h ∈ Rp),

n1/2(Sd
n −md

n)
d−→ N (

p∑
i=1

hidiσ
2I(f), V 2

d ),

where V 2
d =

∑p
i=1 d

2
iσ

2I(f).

This optimality result relies on the following lemma.

Lemma 3.2.5. Let Sn be a linear rank statistic with score-generating function
J∗(vp+1, · · · , v1), and let

J∗
0 (vp+1, · · · , v1) = (σ2I(f))−1

p∑
i=1

Ci

p+ 1− i

p−i∑
j=0

ϕ(F−1(vp+1−j))F
−1(vp+1−j−i).

Denote by S0
n a linear serial rank statistic associated with J∗

0 . Then e(Sn, S
0
n) ≤ 1

for any alternative Hd
n.

Proposition 3.2.6. Under H0,
√
nr1
...√
nrp

logLn

 d−→ N




0
...
0

−1
2

∑p
i=1 d

2
iσ

2I(f)

 ,


d1

I
...
dp

d1 . . . dp
∑
d2iσ

2I(f)


 .

Corollary 3.2.7. Under Hd,

n1/2

p∑
k=1

αkrk
d−→ N (

p∑
i=1

αidi,

p∑
i=1

α2
i )

3.3 Appendix

3.3.1 Formulas

βs + b1βs−1 + · · ·+ bqβs−q = 0 for ∀s ≥ 1.
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(1 + b1L+ · · ·+ bqL
q)−1 =

∞∑
k=0

βkL
k.

ej =

j∑
k=1

βk−1

(
−

p∑
i=0

aiXj+1−k−i

)
+

q−1∑
s=0

e−s

(
s∑

k=0

βj+s−kbk

)
.

∞∑
k=j+1

βk−1

(
q∑

i=0

biej+1−k−i

)
=

q−1∑
s=0

e−s

(
s∑

k=0

βj+s−kbk

)
.

j∑
k=1

βk−1

(
q∑

i=0

biej+1−k−i

)
= ej+1−k −

q−1∑
s=0

e−s

(
s∑

k=0

βj+s−kbk

)
.

p∑
i=0

a0iXt−i =

q∑
i=0

b0i et−i(θ0).

Appendix A: Mathematics amd Time Series

A.1 The Inverse of Partitioned Matrices

For generality, write matrix F as

F =

(
F11 F12

F21 F22

)
.

The inverse of partitioned matrices is shown as

F−1 =

(
F−1
11 + F−1

11 F12F
−1
22·1F21F

−1
11 −F−1

11 F12F
−1
22·1

−F−1
22·1F21F

−1
11 F−1

22·1

)
,

where

F22·1 = F22 − F21F
−1
11 F12.

As an exercise, write matrix G as

G =

(
F−1
11 0
0 0

)
.
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Then

(F−1 −G)F (F−1 −G) = (F−1 −G)

(
0 0

−F21F
−1
11 I

)
=

(
F−1
11 F12F

−1
22·1F21F

−1
11 −F−1

11 F12F
−1
22·1

−F−1
22·1F21F

−1
11 F−1

22·1

)(
0 0

−F21F
−1
11 I

)
=

(
F−1
11 F12F

−1
22·1F21F

−1
11 −F−1

11 F12F
−1
22·1

−F−1
22·1F21F

−1
11 F−1

22·1

)
= F−1 −G

A.2 Discrete Functions and Continuous Functions

Theorem A.1. If f is a real-valued function defined on [ 0,∞) such that sup{V n
0 f :=

1, 2, . . . } <∞, then
∑∞

k=1 f(k) and
∫∞
0
f(t) dt converge or diverge together.

note. Of course, the spectral density and periodogram are real-valued functions
defined on [ 0,∞). It means that m we defined in the paper is also real-valued
function. What does V mean? Let me check!

Theorem A.2. Let f be a nonnegative function defined on [ 0,∞). Then
∑∞

k=1 f(k)
and

∫∞
0
f(t) dt converge or diverge together provided

sup{V n
0 f : n = 1, 2, . . . } <∞,

where V n
0 f denotes the total variation of f on [ 0, n ]

Corollary A.3 (Pólya p.37). If a function g ha finite total variation V on [ 0, 1 ],
then ∣∣∣∣∣

∫ 1

0

g(x) dx− 1

n

n∑
k=1

g(
k

n
)

∣∣∣∣∣ ≤ V

n
.

Calculation. If f is a function satisfying condition (5),

sup{V n
0 f : n = 1, 2, . . . } <∞,

then we have∫ n

0

f(t) dt−
n∑

k=1

f(k) = n

∫ 1

0

f(nx) dx−
n∑

k=1

f(k)

= n

[∫ 1

0

gn(x) dx−
1

n

n∑
k=1

gn

(
k

n

)]
,

where gn(x) is, by definition, equal to f(nx) for all x in [ 0, 1 ].
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Theorem A.4 (Hardy(1910)). Let f be a nonnegative function which is defined
and has a continuous derivative on [ 0,∞]. Then

∑∞
k=1 f(k) and

∫∞
0
f(t) dt con-

verge or diverge together provided∫ ∞

0

|f ′(t)| dt <∞.

Other Results

(3)
∞∑
k=1

sup{|f(k)− f(t)| : k − 1 ≤ t ≤ k} <∞.

(6)

|
n∑

k=1

f(k)−
∫ n

0

f(t) dt| ≤ V n
0 f n = 1, 2, . . . .

(7) ∫ ∞

0

f(t) dt−
n∑

k=1

f(k).

A.3 Hölder’s inequality

Let (S,Σ, µ) be a measure space and let 1 ≤ p, q ≤ ∞ with p−1 + q−1 = 1. Then
for all measurable functions f and g on S,

∥fg∥1 ≤ ∥f∥p∥g∥q. (A.1)

A.4 Uniformly Integrability

Definition A.5. A sequence of random variables {Xn} is said to be uniformly
integrable if

lim
λ→∞

sup
n≥1

En(|Xn|1{|Xn|≥λ}) = 0.

The necessary and sufficient condition for uniformly integrability is given as

Lemma A.6. {Xn} is uniformly integrable if and only if

1. supn≥1En|Xn| <∞;

2. For any sequence of sets {Bn} with Bn ∈ An,

Pn(Bn) → 0 ⇒ EPn(|Xn||1{Bn}) → 0.

Remark A.7. Uniform integrability in conjunction with convergence in distribu-
tion impies convergence of moments.
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A.5 Example of Residual Theorem

Calculation� �∫ 1

0

1

x+ 1
dx = ? (A.2)

� �
As what we are taught in the calculus course, you can easily answer this ques-

tion. The answer is ∫ 1

0

1

x+ 1
dx = [ log(x+ 1) ]10 = log 2. (A.3)

What we will do here is to apply the residual theorem to it! Let us consider
the integral is on the complex plane, and we choose the integral path as follows.

Then,∫ 1

0

1

x+ 1
dx = −

∫ π

0

1/2ieiθ

1 + 1/2 + 1/2eiθ
dθ = −

∫ π

0

ieiθ

3 + 1eiθ
dθ

=

∫ 1

−1

1

3 + y
dy = [ log(3 + y) ]1−1 = log 2. (A.4)

The most important formula for calculating the integration of spectral density
is Formula 1.1 in the following.

Formula 1.1� �∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2

. (A.5)

� �
To derive the formula, you only have to think about the singularity in it.
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A.6 Time Series Model

We will give some examples of integration of spectrums to look at how powerful
residue theorem is in time series.

MA(1)

∫ π

−π

(1 + θeiλ)(1 + θe−iλ) dλ =

∫
|z|=1

(1− θz)(1− θ/z)
dz

iz

=

∫
|z|=1

(1− θz)(z − θ)

iz2
dz

= 2πi · Res(fMA(1), 0) = 2π(1 + θ2).

Formula 2.1� �
σ2

2π

∫ π

−π

(1 + θeiλ)(1 + θe−iλ) dλ = σ2(1 + θ2) (A.6)

� �
A.7 AR(1)

∫ π

−π

1

(1− θeiλ)(1− θe−iλ)
dλ =

∫
|z|=1

1

(1 + θz)(1 + θ/z)

dz

iz

=

∫
|z|=1

1

(1 + θz)(z + θ)

dz

i

= 2πi · Res(fAR(1),−θ) =
2π

1− θ2
.

Formula 2.2� �
σ2

2π

∫ π

−π

1

(1− θeiλ)(1− θe−iλ)
dλ =

σ2

1− θ2
(A.7)

� �
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A.8 ARMA(1,1)∫ π

−π

(1 + θeiλ)(1 + θe−iλ)

(1− ϕeiλ)(1− ϕe−iλ)
dλ =

∫
|z|=1

(1− θz)(1− θ/z)

(1 + ϕz)(1 + ϕ/z)

dz

iz

=

∫
|z|=1

(1− θz)(z − θ)

(1 + ϕz)(z + ϕ)z

dz

i

= 2πi(Res(fARMA(1),−ϕ) + Res(fARMA(1), 0))

= 2π
1 + 2θϕ+ θ2

1− ϕ2
.

Formula 2.3� �
σ2

2π

∫ π

−π

(1 + θeiλ)(1 + θe−iλ)

(1− ϕeiλ)(1− ϕe−iλ)
dλ = σ21 + 2θϕ+ θ2

1− ϕ2
. (A.8)

� �
A.9 AR(2) ∫ π

−π

1

(1− θ1eiλ − θ2ei2λ)(1− θ1e−iλ − θ2e−i2λ)
dλ

=

∫
|z|=1

z

(1 + θ1z − θ2z2)(z2 + θ1z − θ2)

dz

i

Note that the roots z± of z2+θ1z−θ2 = 0 lies in the unit circle, and z2± = −θ1z±+θ2,
then

1 + θ1z− − θ2z
2
− = (1− θ22) + (1 + θ2)θ1z− = (1 + θ2)(1− θ2 + θ1z−). (A.9)

Note again that z+ + z− = −θ1 and z+z− = −θ2,

(equation above) = 2π(Res(fAR(2), z+) + Res(fAR(2), z−))

= 2π
( z+
(1− θ2)(1− θ2 + θ1z+)(z+ − z−)

+
z−

(1− θ2)(1− θ2 + θ1z−)(z− − z+)

)
= 2π

1− θ2
(1 + θ2) [ (1− θ2)2 − θ21 ]

Formula 2.4� �
σ2

2π

∫ π

−π

1

(1− θ1eiλ − θ2ei2λ)(1− θ1e−iλ − θ2e−i2λ)
dλ =

(1− θ2)σ
2

(1 + θ2) [ (1− θ2)2 − θ21 ]
(A.10)� �
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A.10 Estimation to the Model with Infinite Variance

Fit the model
β(L)Xt = α(L)Zt, t ∈ Z,

where β(L) = 1−β1L− · · · , βpLp, α(L) = 1+α1L+ · · ·+αLq, and L is backshift
operator. Here, the process is not assumed to have an ARMA(p,q) representation.

Denote the parameter

θ = (β1, . . . , βp, α1, . . . , αq)
′.

The natural space which contained the parameter is

Θ = {θ ∈ Rp+q : βp ̸= 0, αq ̸= 0, β(z) and α(z) have no common zeros, α(z)β(z) ̸= 0 for |z| ≤ 1}.

Let g(λ, θ) be the power transfer function

g(λ, θ) =

∣∣∣∣α(λ)β(λ)

∣∣∣∣2 ,
and Ĩn,X the self-normalized periodogram

Ĩn,X(λ) =
|
∑n

t=1Xte
−iλt|2∑n

t=1X
2
t

, −π ≤ λ ≤ π.

In K&M(1995, 1996), the true parameter is defined as θ0, and if θ0 ∈ Θ, then the
estimator

θn = argmin
θ∈Θ

σ2
n(θ)

is consistent, where

σ2
n(θ) =

∫ π

−π

Ĩn,X(λ)

g(λ, θ)
dλ.

Theorem A.8. Suppose that (Xt)t∈Z is a general linear process (2.1.5) and as-
sumptions (A) and (B) hold. Moreover, assume that the function

h(θ) =

∫ π

−π

f(λ)

g(λ, θ)
dλ

has an absolute minimum θ0 in the parameter space Θ. Then

θn
p−→ θ0

and
σ2
n(θn)

p−→ 2πψ−2h(θ0),

as n→ ∞.
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In the same paper, K&M gave the more general theorem as follows.

Theorem A.9. Suppose that (Xt)t∈Z is a general linear process with representation
(2.1.5) and (Zt)t∈Z are i.i.d. symmetric such that

n−1/α

n∑
t=1

Zt
d−→ Y, (Y is symmetric α-stable)

holds for some α < 2. Moreover, suppose that the function h has an absolute
minimum θ0 ∈ Θ. Then(

n

log n

)1/α

(θn − θ0)
d−→ 4πW−1(θ0)

1

Y0

∞∑
k=1

Ykbk,

where Y0, Y1, . . . are independent random variables, Y0 =d Sα/2(C
−2/α
α/2 , 1, 0) is pos-

itive α/2-stable, (Yt)t∈N are i.i.d. sαs with scale parameter σ = C
1/α
α , W−1(θ0) is

the inverse of the matrix

W (θ0) =

∫ π

−π

f(λ)
∂2g−1(λ, θ0)

∂θ2
dλ,

and, for k ∈ N, bk is the vector

bk =
1

2π

∫ π

−π

e−ikλf(λ)
∂g−1(λ, θ0)

∂θ
dλ,

where g−1 denotes the reciprocal of g.
In the case in which (Xt) is an ARMA process with true parameter vector θ0,

the matrix W (θ0) can be written in the standard form

W (θ0) =

∫ π

−π

[
∂ log g(λ, θ0)

∂θ

] [
∂ log g(λ, θ0)

∂θ

]′
dλ,

which is common for the Whittle estimator with a Gaussian limit.

A.11 Generalized Theorems in Linear Models

Here, the model is vector-valued and is represented by

z(n) =
∞∑
j=0

G(j)e(n− j), n ∈ Z

(s ∗ 1) (s ∗ p) (p ∗ 1)

E{e(n)} = 0

E{e(m)e(n)′} = δ(m,n)K

(A.11)
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Assumption A.10.
∞∑
j=0

trG(j)KG(j)′ <∞. (A.12)

Under this assumption, the process {z(n)} is a second-order stationary process.
The spectral density matrix of the process is shown as

f(ω) =
1

2π
k(ω)Kk(ω)∗, −π ≤ ω ≤ π. (A.13)

Theorem A.11 (Hosoya-Taniguchi(1982) Thm 2.1). {x(t)}: zero-mean second-
order stationary process. Ft ≡ Fx

t .
Assumptions:

1. ∀ϵ > 0,Var{E(xα(t+ τ)|Ft)} = O(τ−2−ϵ) uniformly in t, for α = 1, . . . , p.

2. ∀l,m > t, ∀η > 0,
E|E{xα(l)xβ(m)|Ft)}−E{xα(l)xβ(m)}| = O[{min(|l−t|, |m−t|)}−1−η] uni-
formly in t, for α = 1, . . . , p.

3. Any element of f(ω) = {fαβ(ω);α, β = 1, . . . , p} is continuous at the origin;
f(0) is non-degenerate.

Result: ξN = N− 1
2

∑N
n=1 x(n) → N(0, 2πf(0)).

Theorem A.12 ((HT) Thm 2.2). B ≡ Be(t).
Assumptions:

1. ∀β1, β2,m,∀ϵ > 0,
Var[E{eβ1(n)eβ2(n+m)|B(n− τ)} − δ(m, 0)Kβ1β2 ] = O(τ−2−ϵ) uniformly in
n.

2. ∀η > 0,
E|E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)|B(n1−τ)}−E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)}| =
O(τ−1−η), uniformly in n1, where n1 ≤ n2 ≤ n3 ≤ n4.

3. fββ are square-integrable.

4.
∑∞

j1,j2,j3=−∞ |Qe
β1...β4

(j1, j2, j3)| <∞.

Results:

1.
√
N{CZ

α1α2
(m)− γZα1α2

(m)} → N(0, ...)
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2.

Cov(
√
N{CZ

α1α2
(m1)− γZα1α2

(m1)},
√
N{CZ

α3α4
(m2)− γZα3α4

(m2)})

→ 2π

∫ π

−π

[fα1α3(ω)f̄α2α4(ω) exp{−i(m2 −m1)ω}+ fα1α4(ω)f̄α2α3(ω) exp{i(m1 +m2)ω}] dω

+ 2π

p∑
β1,...,β4=1

∫ ∫ π

−π

exp{im1ω1 + im2ω2)}kα1β1(ω1)

kα2β2(−ω1)kα3β3(ω2)kα4β4(−ω2)Q̃
e
β1...β4

(ω1,−ω2, ω2) dω1dω2

Lemma A.13 ((HT) Lem 3.1). D(fT (f), f) = mint∈ΘD(ft, f).
Assumptions:

1. Θ : (⊂ Rq) compact.

2. θ1 ̸= θ2 ⇒ fθ1 ̸= ftheta2.

3. fθ(ω): positive definite.

4. fθ(ω) is continuous w.r.t θ, ω.

Results:

1. ∀f ∈ P ,∃T (f) ∈ Θ s.t. D(fT (f), f) = mint∈ΘD(ft, f).

2. T(f): unique, T (fN) →ω f =⇒ as N → ∞, T (fN) →ω f.

3. ∀θ ∈ Θ, T (fθ) = θ.

Theorem A.14 ((HT) Thm 3.1). ∃1T (f) ∈ Θ◦ ;

Mf =

∫ π

−π

[
∂2

∂θ∂θ′
tr{ft(ω)−1f(ω)}+ ∂2

∂θ∂θ′
log det fθ(ω)

]
θ=T (f)

dω,

where Mf is nonsingular matrix.
Assumptions:

1. ∀β1, β2,m,∀ϵ > 0,
Var[E{eβ1(n)eβ2(n+m)|B(n− τ)} − δ(m, 0)Kβ1β2 ] = O(τ−2−ϵ) uniformly in
n.

2. ∀η > 0,
E|E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)|B(n1−τ)}−E{eβ1(n1)eβ2(n2)ebeta3(n3)eβ4(n4)}| =
O(τ−1−η), uniformly in n1, where n1 ≤ n2 ≤ n3 ≤ n4.
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3. fββ are square-integrable.

4.
∑∞

j1,j2,j3=infty |Qe
B1...B4

(j1, j2, j3)| <∞;

5. f(ω) ∈ Lip(α) where α > 1
2
.

Results:

1. p-limN→∞T (Iz) = T (f).

2. as N → ∞,
√
N{T (Iz)− T (f)} → N(0,M−1

f Ṽ M−1
f ). where

Ṽjl = 4π

∫ π

−π

tr

[
f(ω)

∂

∂θj
{ft(ω)}−1f(ω)

∂

∂θl
{ft(ω)}−1

]
θ=T (f)

dω

+2π
s∑

r,t,u,v=1

∫ ∫ π

−π

{
∂

∂θj
f
(r,t)
θ (ω1)

∂

∂θl
f
(u,v)
θ (ω2)

}
θ=T (f)

Q̃z
rtuv(−ω1, ω2,−ω2) dω1dω2,

where f
(r,t)
θ (ω) is the (r,t) element of {fθ(ω)}−1.

Corollary A.15 ((HT)Cor 3.1).

Ṽjl = 4π

∫ π

−π

tr

[
f(ω)

∂

∂θj
{ft(ω)}−1f(ω)

∂

∂θl
{ft(ω)}−1

]
θ=T (f)

dω

+ 2π

p∑
a,b,c,d=1

s∑
r,t,u,v=1

∫ ∫ π

−π

{
∂

∂θj
f
(r,t)
θ (ω1)

∂

∂θl
f
(u,v)
θ (ω2)

}
θ=T (f)

kra(−ω1)ktb(ω1)kuc(−ω2)kvd(ω2)Q̃
e
abcd(−ω1, ω2,−ω2) dω1dω2

Proposition A.16 ((HT) Prop 3.1).
Assumption:

cum{ea(n1), eb(n2), ec(n3), ed(n4)} =

{
κabcd if n1 = n2 = n3 = n4

0 otherwise.
(A.14)

Result:

Ṽjl = 4π

∫ π

−π

tr

[
f(ω)

∂

∂θj
{ft(ω)}−1f(ω)

∂

∂θl
{ft(ω)}−1

]
θ=T (f)

dω

+
s∑

a,b,c,d=1

κabcd

[
1

2π

∫ π

−π

k∗(ω)
∂

∂θj
{fθ(ω)}−1k(ω)dω

]
ab[

1

2π

∫ π

−π

k∗(ω)
∂

∂θl
{fθ(ω)}−1k(ω)dω

]
cd

∣∣
θ=T (f) .
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In the case where f(ω) = fθ(ω) and θ is the innovation-free parameter, the
second term in the right-hand side will be 0. On the other hand, in the case
of f(ω) ̸= fθ(ω), even if (A.14) is satisfied, the quasi-Gaussian maximum likeli-
hood estimates for the innovation-free parameters are generally not robust against
the fourth cumulant. In the case s = 1, that is in the scalar case, the quasi-
Gaussian maximum likelihood estimates for the innovation-free parameters are
robust against fourth cumulant even if f(ω) ̸= fθ(ω).

A.12 Some Results for Unit Root Case

Suppose that {Yt : t = 1, . . . , n} is generated by the first-order autoregressive
process

Yt = θYt−1 + et, Y0 = 0, t = 1, . . . , (A.15)

where et’s are i.i.d. N (0, σ2) random variables and

θ = exp(
c

n
).

As a generation of the LSE θ̂ and
ˆ̂
θc1,c2 ,

θ̂c1,c2 =

∑n
t=2 YtYt−1∑n−1

t=2 Y
2
t + c1Y 2

1 + c2Y 2
n

, c1, c2 ≥ 0.

ˆ̂
θc1,c2 =

∑n
t=2(Yt − Ȳ )(Yt−1 − Ȳ )∑n−1

t=2 (Yt − Ȳ )2 + c1(Y1 − Ȳ )2 + c2(Yn − Ȳ )2
, c1, c2 ≥ 0, Ȳ =

n∑
t=1

Yt/n,

are supposed.
The hypothesis is supposed as

H : θ = 1 vs A : θ ∈ (0, 1).

For the testing problem, the following tests are introduced:

K1n =

√
2

nσ̂2

n∑
t=2

(θ̂c1,c2 − 1); (A.16)

K2n =
n√
2
(θ̂c1,c2 − 1); (A.17)

K3n =

(
n∑

t=2

Y 2
t−1

σ̂2

)1/2

(θ̂c1,c2 − 1), (A.18)

where σ̂2 = n−1
∑n

t=2(Yt − θ̂c1,c2Yt−1)
2.
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Ornstein-Uhlenbeck process

Let Jc(t) be an Ornstein-Uhlenbeck process

Jc(t) =

∫ t

0

exp{(t− s)c} dW (s),

which is generated by
dJc(t) = cJc(t)dt+ dW (t),

with initial condition Jc(0) = 0.

Integrated process

For the process above,
when c ̸= 0, it is called a near-integrated process;
when c = 0, it is called an integrated process.

We give Assumptions on the unit root case:

(UR1) E(et) = 0 for all t,

(UR2) suptE|et|β+ϵ <∞ for some β > 2 and ϵ > 0,

(UR3) σ2 = limn→∞E(n−1S2
n) exists and σ

2 > 0 where St =
∑t

s=1 es,

(UR4) {et} is strong mixing with mixing coefficients αm that satisfy
∑∞

m=1 α
1−2/β
m <

∞.

Some famous results are given below.

Lemma A.17 (Phillips(1987b)). If {Yt} is a near-integrated time series generated
by (A.15), then, as n→ ∞,

1. n1/2Y[nt]
d−→ σJc(t);

2. n3/2
∑n

t=1 Yt
d−→ σ

∫ 1

0
Jc(t) dt;

3. n−2
∑n

t=1 Y
2
t

d−→ σ2
∫ 1

0
Jc(t)

2 dt;

4. n−1
∑n

t=1 Yt−1et
d−→ σ2

∫ 1

0
Jc(t) dW (t)+1

2
(σ2−σ2

e) with σ
2
e = limn→∞ n−1

∑n
t=1E(e

2
t ).

Theorem A.18. If {Yt} is a near-integrated time series generated by the model
above, then, as n→ ∞,

n(θ̂c1,c2 − θ)
d−→

(1− 2c2)Jc(1)
2 − 2c

∫ 1

0
Jc(t)

2 dt− σ2
e/σ

2

2
∫ 1

0
Jc(t)2 dt

.

51



Corollary A.19. If θ = 1 (i.e., c = 0), then

n(θ̂c1,c2 − 1)
d−→ (1− 2c2)W (1)2 − σ2

e/σ
2

2
∫ 1

0
W (t)2 dt

.

Theorem A.20. If {Yt} is a near-integrated time series generated by the model
above, then, as n→ ∞,

n(
ˆ̂
θ−θ) d−→ −2cG+ (1− 2c2)T

2 + 4c2TH − 2(c1 + c2 − 1)H2 − 2HW (1)− σ2
e/σ

2

2(G−H2)
,

where G =
∫ 1

0
Jc(t)

2 dt, T = Jc(1) and H =
∫ 1

0
Jc(t) dt.

Corollary A.21. If θ = 1, then, as n→ ∞,

n(
ˆ̂
θc1,c2 − 1)

d−→ (1− 2c2)T
2
w + 2(2c2 − 1)TwHw − 2(c1 + c2 − 1)H2

w − σ2
e/σ

2

2(Gw −H2
w)

,

where Gw =
∫ 1

0
W (t)2 dt, Tw = W (1) and Hw =

∫ 1

0
W (t) dt.

Theorem A.22. Under H, as n→ ∞, we have

K1n
d−→ (1− 2c2)W (1)2 − 1√

2
; (A.19)

K2n
d−→ (1− 2c2)W (1)2 − 1

2
√
2
∫ 1

0
W (t)2 dt

; (A.20)

K3n
d−→ (1− 2c2)W (1)2 − 1

2(
∫ 1

0
W (t)2 dt)1/2

. (A.21)

Theorem A.23. Under An, as n→ ∞, we have

K1n
d−→

(1− 2c2)Jc(1)
2 − 2c

∫ 1

0
Jc(t)

2 dt− 1
√
2

; (A.22)

K2n
d−→

(1− 2c2)Jc(1)
2 − 2c

∫ 1

0
Jc(t)

2 dt− 1

2
√
2
∫ 1

0
Jc(t)2 dt

; (A.23)

K3n
d−→

(1− 2c2)Jc(1)
2 − 2c

∫ 1

0
Jc(t)

2 dt− 1

2(
∫ 1

0
Jc(t)2 dt)1/2

. (A.24)

Appendix B: Regularly Varying Tail with Index α

Before introducing the stable random variables, we have to understand the scope
where the stable random variables dominate. The crucial concept here is ”in the
domain of attraction”.
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B.1 Domain of Attraction

ϵ is in the domain of attraction of a stable law with a parameter α and write
ϵ ∈ R−α if

P (ϵ > x) = c1x
−αL(x)(1 + α1(x)), x > 0, c1 ≥ 0, (B.1)

and
P (ϵ < −x) = c2x

−αL(x)(1 + α2(x)), x > 0, c2 ≥ 0, (B.2)

with 0 < α < 2, L(x) a slowly varying function at ∞ and αi(x) → 0 as |x| → ∞.
If L(x) = 1, then ϵ is in the normal domain of attraction of a stable law with
parameter α.

Another form for the random variables in the domain of attraction with distri-
bution function F satisfies{

xαP (ϵ > x) = xα(1− F (x)) → pC, x > 0,

xαP (ϵ < −x) = xαF (−x) → qC, x > 0,
(B.3)

which means {
c1 = pC,

c2 = qC.
(B.4)

B.2 Parametrization of stable distributions

Let Y be distributed as stable distribution Sα(σ, β, µ), then its characteristic func-
tion is

E(eitY ) =

{
exp{−σα|t|α(1− iβ(signt) tan πα

2
) + iµt} α ̸= 1,

exp{−σ|t|(1 + 2iβ
π
(signt) log|t|) + iµt},

(B.5)

where σ is the scale parameter, β is the skewness parameter and µ is the location
parameter.

Stable random variables has an exact form of their tails, that is,{
xαP (ϵ > x) = 1+β

2
σαCα, x > 0,

xαP (ϵ < −x) = 1−β
2
σαCα, x > 0.

(B.6)

Here Cα is a constant depending on α, and

Cα =

{
1

Γ(1−α) cos(πα/2)
, if α ̸= 1,

2
π

if α = 1.
(B.7)

Since 0 < α < 2 and Γ(2− α) = (1− α)Γ(1− α),

Cα =

{
1−α

Γ(2−α) cos(πα/2)
, if α ̸= 1,

2
π

if α = 1.
(B.8)

is used in some books.
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B.3 Some Results

Assume that X and Y are independent and satisfy

P [ |X| > t ] ∈ R−α, p1 = lim
t→∞

P [X > t ]

P [ |X| > t ]
exists

and

P [ |Y | > t ] ∈ R−α, p1 = lim
t→∞

P [Y > t ]

P [ |Y | > t ]
exists,

and 0 < α ≤ 2.
For α < 2, these conditions are necessary and sufficient for the distributions

of X and Y to be in stable domains of attraction. Define X+ = max(0, X),
X− = max(0,−X) and similarly for Y+, Y−.

Proposition B.1. Under each of the following conditions p = limt→∞
P [XY >t ]
P [ |XY |>t ]

exists and hence the distribution of XY is in a stable α domain of attraction.

(B1) P [X > t ] = p1P [ |X| > t ] and either p1 = 1/2 or P [Y > t ] = p2P [ |Y | > t ].
In this case p = p1p2 + (1− p1)(1− p2).

(B2) P [ |X| > et ] and P [ |Y | > et ] are both in Sα and limt→∞
P [ |Y |>t ]
P [ |X|>t ]

= k < ∞.
In this case

p =
(p1EY

α
+ + (1− p1)EY

α
− ) + (p2EX

α
+ + (1− p2)EX

α
−)

E|Y |α + kE|X|α

(B3) Either P [ |XY |>t ]
P [ |X|>t ]

→ E|Y |α < ∞ or P [XY >t ]
P [X>t ]

→ EY α
+ < ∞, p1 > 0. In this

case

p =
p1EY

α
+ + (1− p1)EY

α
−

E|Y |α
.

(B4) E|X|α = E|Y |α = ∞. In this case p = p1p2 + (1− p1)(1− p2).

Remark B.2. It is easy to see from (4) that the product of stable distribution is
in stable domain of attraction and another tail satisfies

q = 1− p = p1(1− p2) + p2(1− p1)

if you substitute −t for t above.

B.4 Point Process for the case of dependent variables

Let Fs be the collection of step functions on R− {0} with bounded support. We
have the following conditions:
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On sequence

(a1) {Xk} is an i.i.d sequence of random variables.

(a2) {Xk} is a strictly stationary sequence of random variables.

On random variables

The condition (b1) on random variables is:

P (|Xk| > x) = x−αL(x) (B.9)

with α ∈ (0, 2) and L(x) a slowly varying function at ∞;

P (Xk > x)

P (|Xk| > x)
→ p,

P (Xk < −x)
P (|Xk| > x)

→ q (B.10)

as x→ ∞, 0 ≤ p ≤ 1 and q = 1− p.

On technical conditions

(c1) Let an be defined as

an = inf
{
x : P (|X1| > x) ≤ n−1

}
. (B.11)

(d1) The mixing condition is defined as

E exp

(
−

n∑
j=1

f(Xj/an)

)
−

(
E exp

(
−

rn∑
j=1

f(Xj/an)

))[n/rn]

→ 0 (B.12)

as n→ ∞ for all f ∈ Fs.

B.5 Explanation

• (a1) and (b1) are necessary and sufficient for the existence of normalizing
constants an, bn for which (Sn − bn)/an converges weakly to some stable law
with index α (cf. Feller (1971)). They also imply that

lim
n→∞

P (Sn > tn)

nP (X1 > tn)
= 1 (B.13)

for any constants tn satisfying nP (X1 > tn) → 0.
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• (a1), (b1) and (c1) imply that

nP (|X1| > anx) → x−α for all x > 0. (B.14)

Or we can write it more implicitly,

nP (X1/an ∈ ·) →v µ(·), (B.15)

where µ is the measure

µ(dx) = λ(dx) = αpx−α−11(0,∞)(x)dx+ αq(−x)−α−11(−∞,0)(x)dx, (B.16)

and →v denotes vague convergence on R− {0}.

Define the point process

Nn =
n∑

j=1

δXj/an , (B.17)

where δx represents unit point measure at the point x.
For any y ≥ 0, define

My = {µ ∈M : µ([−y, y]c) > 0 and µ([−x, x]c) = 0 for some 0 < x(= xµ) <∞}.
(B.18)

For µ ∈M0, let µ+ = max(0, largest point of µ), µ− = min(0, smallest point of µ)
and xµ = max(µ+, µ−). Define a mapping on M0 by

Ω : µ→ (xµ, µ(xµ·)). (B.19)

The mapping Ω is continuous with range (0,∞) × M̃ , where M̃ = {µ ∈ M :
µ([−1, 1]c) = 0, µ({−1} ∪ {1}) > 0}. Denote by B(M̃) the Borel σ-field of M̃ .

γ := λ{µ : µ([−1, 1]c) > 0} ∈ (0, 1]

Xn =
∞∑
j=0

cjZn−j. (B.20)

ãn = inf
{
x : P (|Z0Z1| > x) ≤ n−1

}
. (B.21)

∞∑
j=0

|cj|δ <∞ for some δ < α, δ ≤ 1. (B.22)

∞∑
j=−∞

|cj|δ|j| <∞ with

{
δ = 1, if α > 1

0 < δ < α if α ≤ 1.
(B.23)
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ρ̂(h) =
C(h)

C(0)
, h ≥ 0, (B.24)

where

C(h) =
n∑

t=1

XtXt+h. (B.25)

Further,

ρ(h) =

∑
j cjcj+h∑

j c
2
j

.

B.6 Theorems of Asymptotic Distributions

Theorem B.3 (Davis and Hsing [1995]). Assume that the condition (d1) holds
for {Xj}, and Nn →d some N ̸= o. Then N is infinitely divisible with canonical
measure λ satisfying λ(M c

0) = 0 and λ ◦ Ω−1 = ν × O, where O is a probability
measure on (M,B(M̃)), and

ν(dy) = γαy−α−1I(0,∞)(y) dy. (B.26)

In this case the Laplace transform of N is

exp

{
−
∫ ∞

0

∫
M̃

(1− exp(−µf(y·)))O(dµ)ν(dy)

}
, f ∈ F . (B.27)

Theorem B.4 (Davis and Hsing [1995]). Under the condition (d1) for {Xj}, the
following are equivalent:

(i) Nn converges in distribution to some N ̸= o.

(ii) For some finite positive constant γ, knP [∨rn
k=1|Xk| > anx] → γx−α, x > 0,

and for some probability measure O on M̃ , P [
∑rn

j=1 δXj/(∨rn
1 |Xk|)] ∈ ·|∨rn

1 |Xk|| >
anx] →w O, x > 0.

In this case N is infinitely divisible with canonical measure λ confined to M0 and
satisfying

λ ◦ Ω−1 = ν ×O, (B.28)

where ν(dy) = γαy−α−1 dy.

Theorem B.5 (Davis and Hsing [1995]). Suppose that Nn →d N and N has the
representation given by Theorem B.3. Then γ

∑∞
i=1E|Qi|α ≤ 1, where

∑∞
i=1 δQi

∼
O. The equality holds if {Nn([−1, 1]c)}∞n=1} is uniformly integrable.
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Theorem B.6 (Davis and Hsing [1995]). Suppose that {Xj} is a stationary se-
quence of random variables for which all finite-dimensional distributions are jointly
regularly varying with index α > 0. To be specific, let θ(m) = (θ

(m)
i , |i| ≤ m) be

the ransom vector θ that appears in the definition of joint regular variation of Xi,
|i| ≤ m. Assume that the condition (d1) holds for {Xj} and that

lim
m→∞

lim sup
n→∞

P

 ∨
m≤|i|≤rn

|Xi| > tan

∣∣∣|X0| > tan

 = 0, t > 0, (B.29)

where an is defined above. Then the limit

γ := lim
m→∞

E(|θ(m)
0 |α − ∨m

j=1|θ
(m)
j |α)+

E|θ(m)
0 |α

(B.30)

exists. If γ = 0 then Nn →d o; if γ > 0, then Nn converges in distribution to some
N , where, using the representation λ ◦ Ω−1 = ν × O described in Theorem B.3,
ν(dy) = γαy−α−1 dy and O is the weak limit of

lim
m→∞

E(|θ(m)
0 |α − ∨m

j=1|θ
(m)
j |α)+I(

∑
|i|≤m δθ(m)

i ∈·)

E(|θ(m)
0 |α − ∨m

j=1|θ
(m)
j |α)+

(B.31)

as m→ ∞, which exists.

Theorem B.7 (Davis and Hsing [1995]). Let {Xj} be a strictly stationary se-
quence satisfying (c1) and

Theorem B.8 (Davis and Resnick [1986]). Let {Zt } be iid satisfying (B.9) and
(B.10) with 0 < α < 2 and E|Z1|α = ∞. Then, if an and ãn are given by (B.11)
and (B.21),

(a−2
n

n∑
t=1

Z2
t , ã

−1
n

n∑
t=1

(ZtZt+1 − µn), . . . , ã
−1
n

n∑
t=1

(ZtZt+h − µn)) ⇒ (S0, S1, . . . , Sh),

(B.32)
where µn = EZ1Z21[ |Z1Z2|≤ãn ] and S0, S1, . . . , Sh are independent stable random
variables; S0 is positive with index α/2 and S1, S2, . . . , Sh are identically distributed
with index α.

Theorem B.9. Suppose Xt =
∑∞

j=−∞ cjZt−j where {cj} satisfies (B.23) and {Zt}
satisfies (B.9) and (B.10), and E|Z1|α = ∞, 0 < α < 2. If an and ãn are given by
(B.11) and (B.21), then for any positive integer l,

(ã−1
n a2n(ρ̂(h)− ρ(h)− dh,n/C(0)), 1 ≤ h ≤ l) ⇒ (Y1, Y2, . . . , Yl) (B.33)
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in Rl, where

dh,n =
∞∑
j=1

(ρ(h+ j) + ρ(h− j)− 2ρ(h)ρ(h))
∑
i

c2iEZ1Z21[ |Z1Z2|≤ãn ],

Yh =
∞∑
j=1

(ρ(h+ j) + ρ(h− j)− 2ρ(j)ρ(h)Sj/S0),

and S0, S1, S2, . . . are independent stable random variables as described in Theorem
3.3. In addition, if either

case 1 0 < α < 1, or

case 2 α = 1 and the distribution of Zt is symmetric, or

case 3 1 < α < 2 and EZ1 = 0,

then (B.33) holds with dh,n = 0, h = 1, . . . , l, and a location change in the Sj’s,
j ≥ 1.

Theorem B.10 (Davis and Resnick [1985]). Let
∑∞

k=1 ϵjk be a PRM(λ) on R\{0}
with

λ(dx) = αpx−α−11(0,∞)(x)dx+ αq(−x)−α−11(−∞,0)(x)dx, 0 < α < 2. (B.34)

Suppose (B.9) - (B.20), (B.14), (B.22) hold with 0 < α < 2. Then for every
nonnegative integer l, as n→ ∞:

(DR-1)

(n/a2n)(γ̂(0), γ̂(1), · · · , γ̂(l)) ⇒
∞∑
i=1

j2i (
∞∑
j=0

c2j ,
∞∑
j=0

cjcj+1, ·,
∞∑
j=0

cjcj+l)

(B.35)
and

(DR-2)

ρ̂(l) → ρ(l) =

∑∞
j=0 cjcj+l∑∞

j=0 c
2
j

in probability. (B.36)
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Appendix C: Generalized Domain of Attraction

Let X be a real Banach space, that is, X is a real linear, normed, complete space,
with norm ∥·∥. By X∗ we denote its topological dual Banach, that is, x∗ ∈ X∗ are
continuous linear functionals on X, and ⟨ ·, · ⟩ is the dual pair between X∗ and X.
When the norm in X is given by a scalar product, X is called a Hilbert space. In
that case, X∗ is isomorphic to X and the dual pair is simply the scalar product.
Furthermore, all real separable Hilbert spaces are isomorphic to l2, the space of all
real square-summable sequences with

⟨x, y ⟩ :=
∑
i

xiyi, ∥x∥ := ⟨x, x ⟩1/2.

The collection L(X, Y ) of all bounded linear operators from X into Y , using
the operator norm, is also Banach space. Here, the assumption that A is bounded
and linear is equivalent to A being continuous and linear form X to Y , where the
topologies are given by the norms. When X = Y , L(X, Y ) is denoted by End(X);
in which case, we also have that the product of two operators in End(X) is a
continuous linear operator: if A,B ∈ End(X), then AB : X → X is given by
(AB)x = A(Bx) for x ∈ X. Moreover, ∥AB∥ ≤ ∥A∥∥B∥ for all A,B ∈ End(X).
With this multiplication of operators, End(X) becomes a topological semigroup.
By Aut(X), we denote the set of all invertible operators in End(X). These inverse
are also continuous and linear, so Aut(X) is a topological group.

Theorem C.1. Let ξn, ξ be Rd-valued random variables. Then ξn converges in dis-
tribution to ξ in Rd if and only if for every a ∈ Rd, ⟨a, ξn⟩ converges in distribution
to ⟨a, ξ⟩ in R1.

Lemma C.2. Consider symmetrization of µ, i.e. µ0 := µ ∗ µ−. Then the charac-
teristic function of µ0 is real-valued.

Lemma C.3. In the case of a separable metric space, suppµ always exists. suppµ =
{x ∈ X : for every open G containing x, µ(G) ̸= 0}.

Proposition C.4. Let µ, ν ∈ P(X). Then

supp(µ ∗ ν) = (suppµ+ supp ν).

A more general proposition is given as follows:

Proposition C.5. Let µ be a probability on the topological space S1 and let f :
S1 → S2 be a continuous mapping into the topological space S2. Then

fµ = fsuppµ
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In particular, for Banach spaces X and Y , probability µ on X, and a bounded
linear operator A : X → Y , we obtain

supp(Aµ) = A(suppµ).

Proposition C.6. Let µ ∈ P(X). Then (supp µ)⊥ = {x∗ ∈ X∗ : µ̂(tx∗) =
1 for all t ∈ R1}.

C.1 infinitely divisible and stable

Definition C.7. A probability µ on a Banach space X is said to be infinitely
divisible if for each integer n ≥ 2 there exists an element µn ∈ P(X) such that
µn
n = µ, where the nth power of a probability is taken in the sense of convolution.

Definition C.8. A measure µ ∈ P is called operator-stable if there are a measure
ν ∈ P , a sequence {An} of linear operators, and a sequence {an} of vectors such
that

Anν
nδ(an) ⇒ µ.

C.2 basic concepts

We say that a measure µ on Rd is full if its support is not contained in any
proper hyperplane of Rd, that is, for any x in Rd and any subspace W of Rd with
dimW < d, we have µ(W + x) < 1.

1. The idea of fullness is the natural extension of nondegeneracy on R1.

2. It is shown that the set of all full measures is an open subsemigroup of P(Rd).

Generally, the set of all full measures on Rd is denoted by F(Rd). Also the set
H(µ) is defined as

H(µ) = {y ∈ Rd; µ̂(y) = 1}.

Proposition C.9. The following statements are equivalent.

1. µ is full.

2. µ0 is full.

3. H(µ0) does not contain any one-dimensional subspace.

4. For each y ̸= 0, the measure Πyµ is nondegenerate on R where Πy(x) =
⟨x, y ⟩ for x ∈ Rd.
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Corollary C.10. Let A ∈ End(Rd) and µ ∈ P(Rd). Then Aµ is full if and only
if A is invertible and µ is full.

For the Banach space X, let A(X) denote the set of all affine transformations
on X, that is, each α ∈ A(X) is given by an operator A ∈ End(X) and a vector
a ∈ X, α := ⟨A; a⟩, in the following way:

αx := Ax+ a.

In the same way, rα := ⟨rA; ra⟩. The set A(X) is equipped by the norm

∥α∥ := max{ ∥A∥, ∥a∥ },

then it is a Banach space.

Corollary C.11. Let αn, α ∈ A(X), and assume αnx → αx for all x ∈ X. Then
µn ⇒ µ in P(X) implies that αnµn ⇒ αµ.

By AI , we denote the set of all invertible affine transformations on Rd.

Corollary C.12. If αnµn ⇒ µ with µn ∈ P , µ ∈ F , and αn ∈ A, then αn ∈ AI

and µn is full for all sufficiently large n.

Next, we introduce the concept which is called ”conditionally compact”. (The
concept is called ”relatively compact” in some books.)

Definition C.13. A subset Γ of P(S) is called conditionally compact if every
sequence {µn} in Γ contains a subsequence which is weakly convergent in P(S);
the limit probability need not be in Γ.

Definition C.14. A subset Γ of P(S) is called tight if for every ϵ > 0, there is a
compact set K such that µ(K) > 1− ϵ for all µ ∈ Γ.

Theorem C.15 (Prohorov Theorem). For a metric space S, every tight set Γ
in P(S) is conditionally compact. When S is separable and complete, Γ being
conditionally compact implies that Γ is tight.

Lemma C.16. If µn ⇒ µ with µ full and if {αnµn} is tight, where αn ∈ A, then
sup∥αn∥ <∞, that is, {αn} is conditionally compact in A.

In the convergence of types theorems, a fundamental role is played by the set
of operators having the property that the limit measure µ is unchanged by the
action of one of these operators. More formally, we define the invariant semigroup
of µ, Inv(µ), to be

Inv(µ) = {α ∈ A : µ = αµ}.
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Theorem C.17. If µ is full, then Inv(µ) is a compact subgroup of AI . Conversely,
if µ is nonfull, then Inv(µ) is neither a group nor compact.

Lemma C.18. Let µ ∈ P and α ∈ AI . Then

Inv(αµ) = α(Inv(µ))α−1.

Definition C.19. Two measures µ and ν are of the same operator type provided
there is α ∈ A such that µ = αν.

Theorem C.20. Assume that βnµn ⇒ µ, where βn ∈ A, µn ∈ P, and µ full. In
order that αnµn ⇒ ν, with αn ∈ A and ν full, it is necessary and sufficient that
ν = αµ for some α ∈ AI , that is, µ and ν are of the same operator type, and, for
all sufficiently large n,

αn = αηnγnβn,

where ηn → η0 = ⟨I; 0⟩ and γn ∈ Inv(µ).

C.3 Notations and assumptions

In the sequent subsection, we assume that X,X1, X2, X3, . . . are i.i.d on Rd with
common distribution µ and that µ belongs to the strict generalized domain of
attraction of some full operator stable law ν on Rd with no normal component.
If X belongs to the generalized domain of attraction of Y , then there exist linear
operator An and nonrandom vectors an such that

An(X1 +X2 + · · ·+Xn)− an ⇒ Y.

For An, we say a sequence of linear operators on Rd is regularly varying with index
(−E) if

A[tn]A
−1
n → t−E,

for all t > 0. As in the Meerschaert and Scheffler (1999), the notation t−E means
t−E = exp(−E log t) where exp(A) = I +A+A2/2! + · · · is the usual exponential
operator. Sn is used to be the sum of the sample,

Sn = X1 + · · ·+Xn,

while Mn is used to represent the sample covariance matrix, i.e.

Mn =
n∑

i=1

XiX
′
i.

We give three lemmas from Meerschaert and Scheffler (1999) below.
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Lemma C.21. Suppose that µ is regularly varying with exponent E and

nAnµ→ ϕ

holds. If every eigenvalue of E has real part exceeding 1/2 then

AnMnA
∗
n ⇒ W

where W is infinitely divisible on Md
s with Lévy representation [C, 0, Tϕ ].

Lemma C.22.
(AnSn, AnMnA

∗
n) ⇒ (Y,W ).

Lemma C.23. If AnSn ⇒ Y and AnMnA
∗
n ⇒ W hold with An = a−1

n I then

M
−1/2
n Sn ⇒ W−1/2Y .

If α of marginal distribution of X1 are different, it is easy to see that we can
take

An = diag (n−1/α1 , . . . , n−1/αd),

and E becomes
E = diag (1/α1, . . . , 1/αd).

Here, we only think the case that αi = α for i = 1, . . . , d.
We give three general lemmas, which is examined by Meerschaert and Scheffler

(1999).

Lemma C.24. Suppose that µ is regularly varying with exponent E and

nAnµ→ ϕ

holds. If every eigenvalue of E has real part exceeding 1/2 then

AnMn,ZA
∗
n ⇒M

where M is infinitely divisible on Md
s with Lévy representation [C, 0, Tϕ ]. Fur-

thermore, the limit M is operator stable with exponent where ξM = EM +ME∗.

Lemma C.25.
(AnSn, AnMn,ZA

∗
n) ⇒ (Y,M).

Lemma C.26. If AnSn ⇒ Y and AnMn,ZA
∗
n ⇒ M hold with An = a−1

n I then

M
−1/2
n,Z Sn ⇒M−1/2Y .
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Appendix D: AIC and Its Interpretation

D.1 Known Results

The approximate 1-step ahead forecast MSE is given by

Σŷ(1) =
T +Km+ 1

T
Σ̃u, (D.1)

where T is the number of observations, K is the dimension of vectors and m is the
order of AR.

The matrix Σ̃u is given by

Σ̃u =
1

T
Y (IT − Z ′(ZZ ′)−1Z)Y ′ (D.2)

from the LS estimator, which is equivalent to the ML estimator.
The LS estimator with degrees of freedom adjustment gives an unbiased esti-

mator

Σ̂u =
T

T −Kp− 1
Σ̃u. (D.3)

D.2 FPE and AIC

The final prediction error (FPE) criterion is given by

FPE(m) = det [ Σŷ(1) ] = det

[
T +Km+ 1

T

T

T −Km− 1
Σ̃u(m)

]
(D.4)

A very similar criterion abbreviated by AIC is defined as

AIC(m) = ln|Σ̃u(m)|+ 2

T
(numberoffreelyestimatedparameters) (D.5)

The connection is understood by

lnFPE(m) = AIC(m) +
2m

T
+O(T−2), (D.6)

but the constant term must be suspected since the choice of the number of freely
estimated parameters.

D.3 Generalized Information Criterion

First, we define the tool in the argument:
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• A class of parametric models

{fθ; dimθ = p, p = 0, 1, . . . , L}; (D.7)

• A fundamental parametric model fθ0 with order dim θ0 = p0;

• The true model g, which is contiguous to the fundamental parametric model

g = f(θ0,h/
√
n), where h = (h1, . . . , hK−p0)

′. (D.8)

To well define fθ0 , we use a measure of disparity D and θ0 is defined as

D(fθ0 , g) = min
θ∈Θ

D(fθ, g). (D.9)

Then GAIC is defined as

GAIC(p) = nD(fθ̂n , ĝn) + p, (D.10)

which is possible to use in i.i.d case, ARMA case, regression case, or CHARN case.
Before the result, we need some assumptions:

(D1) fθ(·) is continuously twice differentiable with respect to θ.

(D2) The fitted model is nested, i.e., θ(p+ 1) = (θ(p)′, θp+1)
′.

(D3) As n→ ∞, the estimator θ̂n satisfies

√
n(θ̂n − θ0)

L−→ N (0, J(θ0)
−1I(θ0)J(θ0)

−1), (D.11)

and I(θ) = J(θ) if g = fθ.

(D4) If g = fθ(p0), then D(fθ(p), g) is uniquely minimized at p = p0.

Define αi = P (χ2
i > 2i) and

ρ(l, {αi}) =
∗∑
l

{∏}l

i=1

1

r!

(αi

i

)ri
}, (D.12)

where Σ∗
l extends over all l-tuples (r1, . . . , rl) of non-negative integers satisfying

r1 + 2r2 + · · ·+ lrl = l.

Theorem D.1. Suppose g = fθ(p0). Then, under Assuption (D1)-(D4), the
asymptotic selection probability of p̂ selected by GAIC(p) is given by

lim
n→∞

P (p̂ = p) =

{
0, 0 ≤ p < p0,

ρ(p− p0, {αi})ρ(L− p, {1− αi}), p0 ≤ p ≤ L
(D.13)

where ρ(0, {αi})ρ(0, {1− αi}) = 1.

66



To see the asymptotic selection probability under the true model, we need
another set of assumptions:

(D5) If h = 0, the model fθ(·) satisfies (D1) - (D4).

(D6) {P (n)

θ0,h/
√
n
} has the LAN property, i.e.

log
dP

(n)

(θ0,h/
√
n)

dP
(n)
(θ0,0)

= h′∆n(θ0)−
1

2
h′Γ(θ0)h+ op0(1), (D.14)

∆n
L−→ N (0,Γ(θ)0), under P

(n)
(θ0,0)

. (D.15)

(D7) Under P
(n)
(θ0,0)

, for p0 < l ≤ L, the random vectors (Z
(l)
1

′
,∆′

n)
′ are asymptoti-

cally normal with

lim
n→∞

Cov(Z
(l)
1 ,∆n) = {σjk(l); j = 1, . . . , l, k = 1, . . . , K − p0}, (D.16)

and

lim
n→∞

Var(Z l
1) =

(
F

(l−1)
11 F

(l−1)
12

F
(l−1)
21 F

(l)
22

)
. (D.17)

Write

Σ(l−1) =

 σ11(l) . . . σ1,K−p0(l)
...

...
σl−1,1(l) . . . σl−1,K−p0(l)

 , (D.18)

and σ(l) = (σl,1(l), . . . , σl,K−p0(l))
′. Then for

W1, . . . ,WL−p0 ∼ i.i.d N (0, 1), (D.19)

we define

µl = (σ(l)′h− F
(l−1)
21 F

(l−1)
11

−1
Σ(l−1)h)

√
F l
22·1, l = p0 + 1, . . . , L,

Sj,m = (Wm − µm+p0)
2 + · · ·+ (Wm−j+1 − µm+p0−j+1)

2 − 2j,

1 ≤ m ≤ L− p0, j = 1, . . . ,m,

Tj,k = (Wk+1 − µk+p0+1)
2 + · · ·+ (Wk+j − µk+p0+j)

2 − 2j,

0 ≤ k ≤ L− p0 − 1, j = 1, . . . , L− p0 − k.

Then we have the following theorem.
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Theorem D.2. Assume Assumption (G1)-(G7). Under P
(n)

(θ0,h/
√
n)
, the asymptotic

selection probability of p̂ is given by

lim
n→∞

P
(n)

θ0,h/
√
n
{p̂ = p} =

{
0, 0 ≤ p < p0

β(p− p0)γ(p− p0) p0 ≤ p ≤ L,
(D.20)

where

β(m) = P

{
m∩
j=1

(Sj,m > 0)

}
, γ(k) = P

{
L−p0−k∩

j=1

(Tj,k ≤ 0)

}
, (D.21)

β(0) = γ(0) = 1. (D.22)

Appendix E: LAN, LAM and LAMN

The theory of LAN started from the idea of Le Cam, who was the major figure in
the development of abstract general asymptotic theory in mathematical statistics.
First, we review his work to express our respect for him.

E.1 Le Cam’s lemmas

The likelihood ratio

Introduce the likelihood ratio Ln = qn/pn, or more precisely,

Ln(x) =


qn(x)

pn(x)
if pn(x) > 0

1 if qn(x) = pn(x) = 0

∞ if qn(x) > pn(x) = 0.

The most remarkable three lemmas are in the flow of [contiguity → LAN → Al-
ternative Hypotheses]. Let Fn be the distribution function of Ln under P n:

Fn(x) = P n(Ln ≤ x).

Lemma E.1. Assume that Fn converges weakly (at continuity points) to a distri-
bution function F such that ∫ ∞

0

xdF (x) = 1.

Then the densities qn are contiguous to the densities pn, n ≥ 1.
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Proof. Step 1 For any test statistics Ψn, we decompose it like∫
Ψn dQn =

∫
{Ln≤y}

Ψn dQn +

∫
{Ln>y}

Ψn dQn

≤ y

∫
Ψn dPn + 1−

∫ y

0

x dFn.

Step 2 ∀ϵ > 0, ∃y > 0 (a continuity point) such that

1−
∫ y

0

x dF <
1

2
ϵ.

Step 3 Fn → F at continuity point entails∫ y

0

x dFn →
∫ y

0

x dF.

Step 4

1−
∫ y

0

x dFn <
1

2
ϵ for n ≥ n0.

Step 5
∫
Ψn dPn → 0 entails

y

∫
Ψn dPn <

1

2
ϵ, for n ≥ n1

Step 6 From (4) and (5), it is easily seen that∫
Ψn dQn → 0.

Corollary E.2. If, under Pn, the ratio Ln is asymptotically log-normal (−1
2
σ2, σ2),

then the densities qn are contiguous to the densities pn.

Proof. Since Y is distributed as log-normal (µ, σ2), log Y is distributed as normal
distribution.

EY = E exp(log Y ) = exp(µ+
1

2
σ2).

As what we see at the lemma above, if µ = −1
2
σ2, then qn are contiguous to the

densities pn.

69



Lemma E.3. Suppose that the following condition (the UAN (uniform asymptotic
negligibility) condition) holds:

max
1≤i≤n

P n(

∣∣∣∣gnifni
− 1

∣∣∣∣ > ϵ) → 0.

Let Wn be

Wn = 2
Nn∑
i=1

{[ gni(X)/fni(Xi) ]
1
2 − 1}.

Suppose also thatWn converges in distribution to N(−σ2/4, σ2) for some σ2. Then,

logLn − (Wn − σ2/4) = oPn(1)

and hence

logLn
d−→ N (−σ

2

2
, σ2).

Proof. Note that

h(x) = h(x0) + (x− x0)h
′(x0) +

1

2
(x− x0)

2

∫ 1

0

2(1− λ)h′′[ x0 + λ(x− x0) ]dλ.

Let Tni satisfies
Tni = 2[ gni(Xi)/fni(Xi) ]

1
2 − 2.

Step 1

log
gni
fni

= Tni −
1

4
T 2
ni

∫ 1

0

[ [2(1− λ)/(1 +
1

2
λTni)

2 ]dλ.

Step 2

logLn =Wn −
1

4

Nn∑
i=1

T 2
ni

∫ 1

0

[ [2(1− λ)/(1 +
1

2
λTni)

2 ]dλ.

Step 3 Introduce

T δ
ni =

{
Tni, if |Tni| ≤ δ,

0, otherwise.

Then we can have a lemma from (Loève (1955)).
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Lemma E.4. If Wn is asymptotically distributed as normal(−1
4
σ2, σ2).

Then for every δ > 0,

Nn∑
i=1

P n(|Tni| > δ) → 0,

Nn∑
i=1

ET δ
ni → −1

4
σ2,

Nn∑
i=1

VarT δ
ni → σ2.

The Lemma will give a good picture of the proof for the Lemma.

Lemma E.5. Assume that the pair (Sn, logLn) is under Pn asymptotically jointly
normal (µ1, µ2, σ

2
1, σ

2
2, σ12) with µ2 = 1

2
σ2
2. Then, under Qn, Sn is asymptotically

normal (µ1 + σ12, σ
2
1).

Proof. Step 1 Write

Qn(Sn ≤ x) =

∫ x

−∞

∫ ∞

−∞
en dFn(u, v) +Qn(pn = 0, Sn ≤ x),

where Fn(u, v) denotes the distribution function of (Sn logLn).

Step 2 µ2 = −1
2
σ2
2 implies the contiguity, and hence

Qn(pn = 0, Sn ≤ x) → 0,

since Pn(pn = 0, Sn ≤ x) = 0 → 0.

Step 3 ∫ x

−∞

∫ c

−c

ev dFn(u, v) →
∫ x

−∞

∫ c

−c

evdΦ(u, v).

Step 4 From Step 1, 2 and 3,

Qn(Sn ≤ x) →
∫ x

−∞

∫ ∞

−∞
ev dΦ(u, v),

which implies the conclusion.
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E.2 Extension of Le Cam’s third lemma

Theorem E.6 (Van der Vaart Theorem 6.6). Let Xn be a map as Xn : Ω → Rk.

Then if Qn is contiguous to Pn, and (Xn,
dQn

dPn
)

d−→ (X, V ) under Pn, then we have

Xn
d−→ L under Qn where

L(B) = E1B(X)V,

and L defines a probability measure.

Suppose α ∈ [1, 2) and

X ∼ S(α, 0,Σ, δ); S(·) denotes a stable distribution,

V ∼ logN (− 1

2σ2
, σ2); logN denotes a lognormal distribution.

Theorem E.7 (The main result). Let Xn be a map as Xn : Ω → Rk. Then if Qn is

contiguous to Pn, and (Xn,
dQn

dPn
)

d−→ (X, V ) under Pn, where X is a stable random

vector of exponent α, and V is also defined as above. then we have Xn
d−→ L under

Qn where L is also a stable random vector of exponent α.

Proof. Let L(B) = E1B(X)eW , where W is a normal random variable, since V is
lognormal. This shows the logarithm of the likelihood ratio is as normal distributed
and for this reason, it is easy to see that Qn is contiguous to Pn.∫

eiu
′xdL(x) = Eeiu

′XeW .

Since (X,W ) is under a disjoint distribution of stable and normal as expectation
above, to calculate the right hand side in the equation above, we just only have to
let

t′ = (u′,−i),

then

Eeiu
′XeW = eiu

′µ− 1
2
σ2− 1

2
(u′,−i)Σ∗(u′,−i)′

= exp{iu′(δ + τ)− 1

2
u′Σu}

Since the right hand side shows the characteristic function of multivariate sta-
ble distribution (formally, it is called Elliptically contoured multivariate stable
distribution S(α, 0,Σ, δ + τ)), we have the conclusion.
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E.3 Introduction

LetX0, X1, . . . , Xn be i.i.d random vectors defined on the probability space (X ,A, Pθ),
and θ ∈ Θ open ⊂ Rk, k ≥ 1. For the observations, let An = σ(X0, X1, . . . , Xn)
be the σ-field induced by them, and let Pn,θ = Pθ | An be the restriction of Pθ to
An. We set

q(X0; θ, θ
∗) =

dP0,θ∗

dP0,θ

,

be the Radon-Nikodym derivative involved and

φj(θ, θ
∗) = φ(Xj, θ, θ

∗) = [ q(Xj; θ, θ
∗) ]1/2 ,

so that φj(θ, θ
∗) is square P0,θ-integrable.

Let a sequence {θn}, which is close to θ, be defined by

θn = θ + hn/
√
n, with hn → h ∈ Rd. (E.1)

Remark E.8. Usually, P0,θ = µ.

To see the assumptions for LAN, we need first look at two definitions here.

Definition E.9 (q.m.d). The family {Pθ, θ ∈ Θ} is quadratic mean differen-
tiable(q.m.d) at θ0 if there exists a vector of real-valued functions η(·, θ0) =
(η1(·, θ0, . . . , ηk(·, θ0))′) such that∫

X

[√
pθ0+h(x)−

√
pθ0(x)− < η(x, θ0), h >

]2
dµ(x) = o(|h|2)

as |h| → 0.

Definition E.10 (Fisher Imformation matrix). For a q.m.d family with derivative
η(·, θ), define the Fisher information matrix to be the matrix Γ(θ0) with (i, j) entry

Γi,j(θ0) = 4

∫
ηi(x, θ0)ηj(x, θ0) dµ(x).

Remark E.11. η(x, θ0) can be seen as

η(x, θ0) =
1

2
l̇θ
√
pθ,

where

l̇θ(x) = 2
1√
pθ(x)

∂

∂θ

√
pθ(x) =

∂

∂θ
log pθ(x).

We summarize this point in the following theorem.
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Theorem E.12. Suppose Θ is an open subset of R and fix θ0 ∈ Θ. Assume p
1/2
θ (x)

is an absolutely continuous function of θ in some neighborhood of θ0, for µ-almost
all x. Also, assume for µ-almost all x, the derivative p′θ(x) of pθ(x) with respect
to θ exists at θ = θ0. Define

η(x, θ) =


p′θ(x)

2p
1/2
θ (x)

if pθ(x) > 0 and p′θ(x) exists

0 otherwise

Also, assume the Fisher Information Γ(θ) is finite and continuous in θ at θ0. Then,
{Pθ} is q.m.d at θ0 with quadratic mean derivative η(·, θ0).

Proof. Step 1 Let x be such that p
1/2
θ (x) is absolutely continuous in [θ0, θ0 + δ],

then{
1

δ
[ p

1/2
θ0+δ(x)− p

1/2
θ0

(x) ]

}
=

1

δ2

[ ∫ δ

0

η(x, θ0 + λ) dλ

]2
≤ 1

δ

∫ δ

0

η2(x, θ0+λ) dλ.

Step 2 From Step 1,∫ {
1

δ
[ p

1/2
θ0+δ(x)− p

1/2
θ0

(x) ]

}
dµ(x) ≤ 1

4δ

∫ δ

0

I(θ0 + λ)dλ.

Step 3 By continuity of I(θ) at θ0, the right hand side tends to 1
4
I(θ0) as δ → 0.

Step 4 From the definition of η, we can see that

1

δ
[ p

1/2
θ0+δ(x)− p

1/2
θ0

(x) ] → η(x, θ0).

Step 5 From Vitali’s Theorem,∫
X

[√
pθ0+δ(x)−

√
pθ0(x)− < η(x, θ0), δ >

]2
dµ(x) → 0

as δ → 0.

Definition E.13. If the Fisher information matrix is nonsingular at θ0 ∈ Θ◦, then
we call θ0 a regular point. Furthermore, if every point of Θ is regular and ηi(·) is
continuous, then we call the parametrization θ → Pθ is regular and P = {Pθ} a
regular parametric model.
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For simplicity, we will eliminate x in the notation and focus on θ instead. The
other notations in this section are given below:

Ln(θ, θn) =
dPn,θn

dPθ

(the relevant likelihood ratio);

Λn(θ, θ
∗) = logLn(θ, θ

∗) (log-likelihood ratio);

∆n(θ) =
2√
n

n∑
j=0

φ̇j(θ); (score function)

Γ(θ) = 4Eθ [ φ̇0(θ)φ̇
′
0(θ) ] ; (Fisher information)

A(h, θ) =
1

2
h′Γ(θ)h.

E.4 Assumtions (A1)-(A4)

To obtain LAN, we need assumptions as follows:

(A1) The probability measures {P0,θ; θ ∈ Θ} are mutually absolutely continuous.

(A2) (a) For each θ ∈ Θ, the random function φ0(θ, θ
∗) is differentiable in

quadratic mean with respect to θ∗ at θ when Pθ is employed.

(b) φ̇0(θ) is A0 × C-measurable, where C is the σ-field of Borel subsets of
Θ.

(A3) Γ(θ) is positive definite for every θ ∈ Θ.

(A4) For each θ ∈ Θ,

(a) q(X0; θ, θ
∗) → 1 in P0,θ-probability, as θ

∗ → θ.

(b) q(X0; θ, θ
∗) is A0 × C-measurable.

Theorem E.14. Let θn, Ln(θ, θn), ∆n(θ), and A(h, θ) be defined above. Then,
under assumptions (E.4),

Λn(θ, θn)− h′∆n(θ)
Pn,θ−−→ −A(h, θ); (E.2)

L [ ∆n(θ) |Pn,θ ] ⇒ N (0,Γ(θ)); (E.3)

L [ Λn(θ, θn) |Pn,θ ] ⇒ N (−1

2
h′Γ(θ)h, h′Γ(θ)h). (E.4)

Remark E.15. Theorem (E.14) shows the relationship between log-likelihood
ratio, central sequence and Fisher information under the true distribution. Central
sequence follows CLT to have asymptotic normality and so if Fisher information
is non-random, then the log-likelihood ratio has also asymptotic normality.
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Remark E.16. Every pθ in a regular parametric model P satisfy the assumptions
above.

Theorem E.17 (ULAN). Suppose that P = {Pθ : θ ∈ Θ} is a regular parametric
model, then we have

Λn(θ, θn) = h′∆n(θ)−
1

2
h′Γ(θ)h+Rn(θ, h),

where Rn(θ, h) → oPθ
(1) uniformly for θ ∈ K compact ⊂ Θ and |h| ≤M .

On the contrary, the distribution of log-likelihood ratio under the alternative
hypotheses can be also obtained through the proposition below:

Proposition E.18. Let {h∗n}be a bounded sequence in Rk, and set θ∗n = θ+h∗n/
√
n.

Then under assumptions (E.4), the sequence {Pn,θ} and {Pn,θ∗n} are contiguous; in
particular, so are the sequences {Pn,θ} and {Pn,θn}.
Theorem E.19. Under assumptions (E.4),

Γn(θ, θn)− h′∆n(θ)
Pn,θn−−−→ −A(h, θ); (E.5)

L [ Λn(θ, θn) |Pn,θn ] ⇒ N (
1

2
h′Γ(θ)h, h′Γ(θ)h); (E.6)

L [ ∆n(θ) |Pn,θn ] ⇒ N (Γ(θ)h,Γ(θ)). (E.7)

Remark E.20. Another version for the result is

∆n(θn)−∆n(θ) →pθ −Γ(θ)h, n→ ∞, (E.8)

uniformly in θ ∈ K and |t| ≤M . In other words, the difference between two scores
are asymptotically linear where the slope is the Fisher information.

The likelihood ratio behaves as if it were an exponential family.

Theorem E.21. Under assumptions (E.4), there exists a truncated version ∆∗
n(θ)

of ∆n(θ) such that:

EθEh′∆∗
n(θ) ≡ EBn(h) <∞, (E.9)

Pn,θ [ ∆
∗
n(θ) ̸= ∆n(θ) ] → 0, (E.10)

Pn,θn [ ∆
∗
n(θ) ̸= ∆n(θ) ] → 0, (E.11)

and if

Rn,h(A) = E−Bn(h)

∫
A

Eh′∆∗
n(θ)dPn,θ, A ∈ An,

then
∥Pn,θn −Rn,hn∥ → 0, (E.12)

or
sup

{
∥Pn,θn −Rn,h∥; h ∈ B bounded ⊂ Rk

}
→ 0. (E.13)
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Remark E.22. The truncated version ∆∗
n(θ), which can be seen as exponential

family, can not be identified from ∆n(θ) under either hypothesis or alternatives.

E.5 LAN for stochastic Process

For stochastic, we refer to Taniguchi and Kakizawa [2000].

Theorem E.23 (Le Cam (1986)). Suppose that under P0,n the following conditions
(L1)-(L4) are satisfied.

(L1) maxk|Yn,k| →p 0,

(L2)
∑

k Y
2
n,k →p σ

2/4,

(L3)
∑

k E(Y
2
n,k + 2Yn,k|Fn,k−1) →p 0,

(L4)
∑

k E (Y 2
n,k1Yn,k>δ|Fn,k−1

) →p 0 for some δ > 0. Then Λn →d N (−σ2/2, σ2).

Swensen (1985) gave a martingale difference version to Theorem E.23, and
apply the new version to the AR model. Kreiss (1987, 1990) generalized the result
to the ARMA process.

In Taniguchi and Kakizawa [2000], they posed the following assumption to the
m-vector linear process

X(t) =
∞∑
j=0

Aθ(j)U (t− j), t ∈ Z, (E.14)

where the U(t) are i.i.d. m-vector random variables with probability density
p(u) > 0 on Rm, and Aθ(j), j ∈ Z, are matrices depending on a parameter vector
θ ∈ Θ compact ⊂ Rq.

(TK 1) SupposedetAθ(z) ̸= 0 for |z| ≤ 1 and Aθ(z)
−1 can be expanded by

Aθ(z)
−1 = Im +

∞∑
j=1

(Bθ(j)z
j)j. (E.15)

(a) For some D (0 < D < 1/2), the coefficient matrices Aθ(j) satisfy

|Aθ(j)kl| = O(j−1+D), j ∈ N, for all 1 ≤ k, l ≤ m. (E.16)

(b) Every Aθ(j) is continuously twice differentiable with respect to θ, and the
derivatives satisfy

|∂i1∂i2 · · · ∂ikAθ(j)ab| = O(j−1+D(log j)k), k = 0, 1, 2 (E.17)

for a, b = 1, . . . ,m, where ∂i = ∂/∂θi.
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(c) where

|Bθ(j)kl| = O(j−1−D), j ∈ N, for all 1 ≤ k, l ≤ m. (E.18)

(d) Every Bθ(j) is continuously twice differentiable with respect to θ, and the
derivatives satisfy

|∂i1∂i2 · · · ∂ikBθ(j)ab| = O(j−1−D(log j)k), k = 0, 1, 2 (E.19)

for a, b = 1, . . . ,m.

(TK 2) p(·) satisfies

lim
∥u∥→∞

p(u) = 0, E(u) = 0, Var(u) = Im. (E.20)

(TK 3) The continuous derivative Dp of p(·) exists on Rm.

(TK 4)
∫
Rm |ϕ(u)kl|4p(u)du <∞, for all 1 ≤ k, l ≤ m, where ϕ(u) = p−1Dp.

Theorem E.24. Suppose that assumptions above hold. Write

Bh′∂θ(j) =

q∑
t=1

hl∂lBθ(j), (E.21)

F(p) =

∫
Rm

ϕ(u)ϕ(u)′p(u)du. (E.22)

Then

Λn(θ, θn) = ∆n,h(θ)−
1

2
Γh(θ) + opθ(1), (E.23)

where

∆n,h(θ) =
1√
n

n∑
k=1

ϕ(U (k))′
k−1∑
j=1

Bh′∂θ(j)X(k − j), (E.24)

Γh(θ) = tr{F(p)
∞∑

j1=1

∞∑
j2=1

Bh′∂θ(j1)R(j1 − j2)Bh′∂θ(j2)
′}. (E.25)

Further, under Pθ, we have

∆n,h(θ)
Pn,θ−−→ N (0,Γh(θ)). (E.26)

Finally, For all n ∈ N, and all h ⊂ H ⊂ Rq, the mapping h→ Pn,θn is continuous
with respect to the variational distance

∥P −Q∥ = sup{|P (A)−Q(A)|| : A ∈ An}. (E.27)
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E.6 Metrics for the space of measure

Definition E.25. A set P is a metric space if there exists a real-valued function
d defined on P × P such that for all points p, q and r in P ,

• d(p, q) ≥ 0;

• d(p, q) = d(q, p);

• d(p, q) ≤ d(p, r) + d(r, q).

A function d satisfying these conditions is called a metric.

Example 2. The Lévy distance:

ρL(F,G) ≡ inf{ϵ > 0;F (x− ϵ) ≤ G(x) ≤ F (x+ ϵ) + ϵ for all x}.

note.
Fn

d−→ F ⇐⇒ ρL(Fn, F ) → 0.

Example 3 (Uniform metric).

dK(F,G) ≡ sup
t

|F (t)−G(t)|.

note. Let F̂n be the empirical c.d.f. defined by

F̂n(t) =
1

n

n∑
i=1

1{Xi ≤ t}.

Consider the problem of testing the simple null hypothesis that F = F0 versus
F ̸= F0. The Kolmogorov-Smirnov goodness of fit test statistic is given by

Tn ≡ sup
t∈R

n1/2|F̂n(t)− F0(t)| = n1/2dK(F̂n, F0).

The statistic tends to small under the null bypothesis and large under the alter-
native, which is justified by the theorem below. The Kolmogorov-Smirnov test
rejects the null hypothesis if Tn > sn,1−α, where sn,1−α is the 1− α quantile of the
null distribution of Tn when F0 is the uniform U(0, 1) distribtuion.

Theorem E.26 (Dvoretzky, Kiefer, Wolfowitz Inequality). Suppose X1, . . . , Xn

are i.i.d. real-valued random variables with c.d.f. F. Let F̂n be the empirical c.d.f.
Then, for any d > 0 and any positive integer n,

P{dK(F̂n, F ) > d} ≤ C exp(−2nd2),

where C is a universal constant.
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In fact, the result is improved by Massart(1990) as

P (
√
n sup

x
|F̂n(x)− F (x)| > λ) ≤ 2 exp(−2λ2),

which has not any restriction on λ.
note. There are so many technical calculations and lemmas in the paper, so we
will not get involved in the proof.

Using the fact, it is easy to show the theorem below.

Theorem E.27 (Glivenko-Cantelli Theorem). Suppose X1, . . . , Xn are i.i.d. real-
valued random variable with c.d.f. F. Then

dK(F̂n, F ) → 0 a.s..

E.7 L1 norm, L2 norm and contiguity

For a test ϕ, denote the sum of the probability of rejecting P0 when P0 is true and
the probability of rejecting P1 when P1 is true by

SP0,P1(ϕ) =

∫
X
ϕ(x) dP0(x) +

∫
§
(1− ϕ(x)) dP1(x)

and let
S(P0, P1) = inf

ϕ
[SP0,P1(ϕ) ].

Definition E.28. The total variation distance between P0 and P1, denoted ||P1−
P0||1, is given by

||P1 − P0||1 =
∫

|p1 − p0| dµ,

where pi is the density of Pi with respect to any measure µ dominating both P0

and P1.

Definition E.29. Let P0 and P1 be probabilities on (X ,F). The Hellinger distance
H(P0, P1) between P0 and P1 is given by

H2(P0, P1) =
1

2

∫
X

[√
p1(x)−

√
p0(x)

]2
dµ(x).

Furthermore, define
ρ(P0, P1) = 1−H2(P0, P1).

then,

ρ(P0, P1) =

∫
X

√
p0(x)p1(x) dµ(x).
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note. Let P n denote the joint distribution of i.i.d X1, . . . , Xn under P. Then note
that

ρ(P n
0 , P

n
1 ) = ρn(P0, P1).

Theorem E.30. SP0,P1(ϕ) is minimized by taking ϕ = ϕ∗ a.e. µ, where ϕ∗ is any
test satisfying

ϕ∗(x) =

{
1 if p1(x) > p0(x),

0 if p1(x) < p0(x).

Furthermore,

S(P0, P1) = SP0,P1(ϕ
∗) = 1− 1

2
||P1 − P0||.

Lemma E.31. Suppose ||Pn −Qn||1 → 0. Then Pn and Qn are mutually contigu-
ous. Furthermore, for any sequence of test function ϕn,∫

ϕn dPn −
∫
ϕn dQn → 0.

Theorem E.32. Suppose

c1 = lim inf nH2(Pθ0 , Pθn) ≤ lim supnH2(Pθ0 , Pθn) = c2.

Then,

1− [1− exp(−2c2)]
1/2 ≤ lim inf S(P n

θ0
, P n

θn) ≤ lim supS(P n
θ0
, P n

θn) ≤ exp(−c1).

Theorem E.33.

1. If nH2(Pn, Qn) → 0, then ||Qn
nP

n
n ||1 → 0 and {Qn

n} are contiguous.

2. If nH2(Pn, Qn) → ∞, then S(P n
n , Q

n
n) → 0 and {P n

n } and {Qn
n} are not

contiguous.

E.8 A Convolution Representation Theorem

Definition E.34. With θn = θ + h√
n
, the estimate Tn is said to be regular if

L
[√

n(Tn − θn) |Pn,θn

]
⇒ θ, (E.28)

a probability measure.

Theorem E.35. Under assumptions (E.4), for regular estimates,

L(θ) = N (0,Γ−1(θ)) ∗ L∗(θ), (E.29)

where L∗(θ) is a specific probability measure.
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E.9 LAM [Fabian and Hannan(1982) page 463]

Let γn be the central sequence and Mn be a k × k positive definite matrix such
that

∥M−1
n ∥ → 0, (E.30)

and set
θnh (to be shortened to θn) = θ +M−1

n h, h ∈ Rd (E.31)

so that θ ∈ Θ for all sufficiently large n. If Condition LAN ⟨θ,Mn, γn⟩ holds then
⟨Zn⟩ is LAM(θ) (locally asymptotically minimax at θ) if ⟨Zn⟩ is a sequence of
estimates for which

lim
k→∞

lim
n→∞

sup
||M1/2

n (δ−θ)||≤K

En,δl(QnM
1/2
n (Zn − δ)) ≥ N l

holds for every sequence ⟨Qn⟩ in the collection of all orthogonal k×k matrices and
for every bounded loss function l on Rk.

Definition E.36. A sequence ⟨Zn⟩ of estimates is called regular(θ) if

M1/2
n (Zn − θ)− γn → 0 in ⟨En,θ⟩-prob.

Theorem E.37. Let ⟨Zn⟩ be a sequence of estimates. Then the regularity(θ) of
⟨Zn⟩ implies

E
M

1/2
n (Zn−δn)

n,δn
⇒ N

for every sequence δn = θ+M
−1/2
n tn such that ⟨tn⟩ is bounded; the latter property,

in turn, implies that ⟨Zn⟩ is LAM (θ).

E.10 Discrete sequences of estimators

The discrete sequences of estimators {θ̄n} satisfies that θ̄n is given by one of the
vertices of {θ : θ = n−1/2(i1, . . . , ip+q), ij ∈ Z} nearest to θn, which is a sequence
with √

n(θn − θ0) is bounded by a constant c > 0.

This idea is due to Le Cam(1960), (1969), (1970) for construction of an efficient
estimator.

Theorem E.38. If P = {Pθ; θ ∈ Θ} is a regular parametric model on a Euclidean
space X and θ is identifiable, then there exist uniformly

√
n-consistent estimates

of θ.

The steps are as follows:
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Step 1 Construct θ̃n uniformly
√
n-consistent as in theorem 2.3 below.

Step 2 Form a grid of cubes with sides of length cn−1/2 over Rk, given θ̃n, define
θ∗n to be the midpoint of the cube into which θ̃n fallen. (This means that
θ∗n is also uniformly

√
n consistent.)

Step 3 Define

θ̂n = θ∗n + n−1

n∑
i=1

I−1(θ)l̇(Xi, θ
∗
n).

Theorem E.39. If P is a regular parametric model and if there exists a uniformly√
n-consistent estimator θ̃n of θ, then the estimator θ̂n given above is a uniformly

efficient estimator of θ.

note. It is important for the result above that the sample space is Euclidean.
note2. The result is also important since even if the maximum likelihood estimate
θ̂n does not exist, we can define a one-step Newton-Raphson approximate ’solution’
by

θ̂approxn = θ̃n +

[
− 1

n

n∑
i=1

l̈(Xi, θ̃n)

]−1
1

n

n∑
i=1

l̇(Xi, θ̃n).

E.11 LAN for ARMA process in Kreiss (1987)

The LAN property is established for ARMA model by using the assumptions of
Roussas(1979). Similar conditions sufficient for the LAN property are given in
Swensen(1985).

Theorem E.40 ((K-Theorem 3.1)LAN property for ARMA models). Let {hn} ⊂
Rp+q be a bounded sequence and θn = θ0 +n−1/2hn. Under our assumptions (A1)–
(A4) and (A6) in Chapter 3, we have for

∆n(θ) =
2√
n

n∑
j=1

φ̇(ej(θ))Z(j − 1; θ, θ), φ̇ = −f ′/2f,

the following two results:

log[ dPn,θn/dPn,θ0 ]− hTn∆n(θ0) +
1

2
hTnI(f)Γ(θ0)hn → 0,

in Pn,θ0-probability, where Γ(θ0) is defined in Theorem 3.5 below (approximation
of the log-likelihood ratio).

L(∆n(θ0)|Pn,θ0) ⇒ N (0, I(f)Γ(θ0)),

where ”⇒” denotes weak convergence (asymptotic normality of the approximating
statistic).
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Corollary E.41. Under the same assumption as above {Pn,θ0} and {Pn,θn} are
contiguous in the sense of Definition 2.1, Roussas (1972), page 7, and

L(∆n(θ0)− I(f)Γ(θ0)hn|Pn,θn) ⇒ N (0, I(f)Γ(θ0)).

E.12 The sufficient conditions for local asymptotic normal-
ity

The 4 theorems below guarantee that the sufficient conditions for the LAN in
Roussas (1979) are fulfilled.

Theorem E.42. For each θ0 ∈ Θ, the random functions ϕj(θ0, ·) are differentiable
in q.m. [Pθ0 ] uniformly in j ≥ 1. That is, there are (p + q)-dimensional r.v.’s
ϕ̇j(θ0) = φ̇(e0j)Z(j − 1; θ0, θ0) = φ̇(e0j)Z

0(j − 1) [the q.m. derivative of ϕj(θ0, θ)
with respect to θ at θ0] such that

ϕj(θ0, θ0 + λh)− 1

λ
− hT ϕ̇j(θ0) → 0, in q.m. [Pθ0 ] as λ→ 0

uniformly on bounded sets of h ∈ Rp+q and uniformly in j ∈ N. Finally, ϕ̇j(θ0) is
measurable with respect to Aj.

Theorem E.43. For each θ0 ∈ Θ and each h ∈ Rp+q, the sequence {(hT ϕ̇j(θ0))
2}, j ∈

N, is uniformly integrable with respect to Pθ0.

Theorem E.44. For each θ0 ∈ Θ and j ≥ 1 let the (p+ q)× (p+ q)-dimensional
covariance matrix Γj(θ0) be defined by

Γj(θ0) = 4Eθ0 [ ϕ̇j(θ0)ϕ̇
T
j (θ0) ] = I(f)Eθ0 [Z(j − 1; θ0, θ0)Z

T (j − 1; θ0, θ0) ].

Then Γj(θ0) → Γ(θ0)I(f), as j → ∞, in any one of the standard norms in Rp+q,
and Γ(θ0) is positive definite.

Theorem E.45. (i) For each θ0 ∈ Θ, each h ∈ Rp+q and for the probability
measure Pθ0, the WLLN holds for the sequence {[hT φ̇j(θ0) ]

2, j ∈ N}. Also
(ii)

1

n

n∑
j=1

{Eθ0 [ (h
T ϕ̇j(θ0))

2|Aj−1 ]− [hT ϕ̇j(θ0) ]
2} → 0, as n→ ∞,

in Pθ0-probability.
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Existence and construction of LAM estimates

Lemma E.46 (K-Lemma 4.1). Under assumptions (A1)–(A3) and (A6), we have
for any sequence {Zn} of estimates the following implication:

√
n(Zn − θ0)−

Γ(θ0)
−1

I(f)
∆n(θ0) = oPθ0

(1) ({Zn} is called θ0-regular)

implies that {Zn} is LAM.

Theorem E.47 (Existence of LAM estimators). Assume {θ̄n} ⊂ Θ is discrete and√
n-consistent for θ0 ∈ Θ. Then θ̂n defined below is regular:

θ̂n = θ̄n +
1√
n

Γ̂n(θ̄n)
−1

I(f)
∆n(θ̄n),

Γ̂n(θ) =
1

n

n∑
j=1

Z(j − 1; θ, θ)ZT (j − 1; θ, θ).

Construction of adaptive estimates

Theorem E.48. Let {θ̄n} ⊂ Θ be a discrete and
√
n-consistent sequence of esti-

mators of θ0. Under our assumptions (A1)–(A3),(A6)–(A9) and

∆̃n(θ̄n)−∆n(θ̄n) = oPθ0
(1)

holds, if cn → ∞, gn → ∞, σ(n) → 0, dn → 0, σ(n)cn → 0, gnσ(n)
−4/n → 0 and

nσ(n) stays bounded.

E.13 LAQ

Denote the log-likelihood ratio statistic by

Λ(θ + δntn; θ) = log
dPθ+δntn

dPθ

Definition E.49. The family Pn = {Pγ,n; γ ∈ Θ} is termed locally asymptotically
quadratic (LAQ) at Θ if there exists a vector Sn and an a.s. non-negative definite
matrix Kn, both possibly random, such that for every tn ∈ B,

Λ(θ + δntn; θ)− t′nSn +
1

2
t′nKntn

p−→ 0.

In particular, if Kn can be taken as non-random, then the LAQ family reduces to
LAN family.
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Theorem E.50 (Hájek- LeCam-Inagaki theorem). Consider the LAMN family
Fθ,n = {Pθ+δnτ,n; τ being a p-dimensional vector}, and assume that under Pθ,n,
the matrx Kn converges in probability to some non-random K. For a given non-
random matrix A, consider the parameter Aτ , and let Tn be an estimator of Aτ ,
such that

Tn −AτH(·),

in distribution under Pθ+δnτ,n, where H(·) does not depend on τ . Then H is the
distribution of the random vector AK−1/2Z+U , where Z and U are stochastically
independent, and Z is asymptotically normal (0, I), where I is the identity matrix.

E.14 LAMN

Let δn be a k × k positive definite matrix such that

∥δ−1
n ∥ → 0, (E.32)

and set
θnh (to be shortened to θn) = θ + δ−1

n h, h ∈ Rd (E.33)

so that θ ∈ Θ for all sufficiently large n.

Remark E.51. δn is a generalized matrix instead of
√
n.

Definition E.52. The sequence of experiments { (X ,An, Pn,θ); θ ∈ Θ }, n ≥ 1, is
said to be Locally Asymptotically Mixed Normal, if the following two conditions
are satisfied:

1. There exists a sequence {Wn(θ)}, n ≥ 1, of An-measureble k-dimensional
random vectors, and a sequence {Tn(θ)}, n ≥ 1, of An-measurable k × k
symmetric and a.s. [Pn,θ ] positive definite random matrices, such that, for
every h ∈ Rk,

Λn(θn, θ)−
[
h′T 1/2

n (θ)Wn(θ)−
1

2
h′Tn(θ)h

]
→ 0 in Pn,θ-probability.

(E.34)

2. There exists an a.s. [Pn,θ ] positive definite k × k symmetric random matrix
T (θ), such that

L{ [Wn(θ), Tn(θ) ] |Pn,θ } ⇒ L{ [W (θ), T (θ) ] |Pθ } , (E.35)

where W (θ) ∼ N (0, Ik) and is independent of T (θ).
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Remark E.53. By setting,

∆n(θ) = T 1/2
n (θ)Wn(θ) and ∆(θ) = T 1/2(θ)W (θ) (E.36)

Remark E.54. The points at which LAN of LAMN do not hold are called ’critical
points’.

Remark E.55. For LAQ experiments, it is observed that, under the contiguity of
{Pn,θ} and {Pn,θn}, the following relation holds:

E
[
exp(h′∆− 1

2
h′Th)

]
= 1 for all h, (E.37)

where ∆ and T are as above.

Appendix F: RANK

Consider that we have N samples (X1, . . . , XN).

F.1 Definitions

Ordered Statistics

XN(1) ≤ · · · ≤ XN(N),

which makes a seq in the increasing order is an asymptotic case. If the asymptotic
property is not considered, then we may write as follows in the same meaning:

X(1) ≤ · · · ≤ X(N).

Rank

R will stand for the vector of ranks (R1, . . . , RN). r and (r1, . . . , rN) will be the
realization of R, respectively. In the asymptotic case we use

RNi.

It is the position number of the i-th sample in N samples. The property is

Xi = XN(RNi).

note1. If Xi is tied with some other observations, then we can not define the rank
uniquely. In this case, we have two ways to solve this problem as follows:
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1. Let Xi = XN(j) for all Xi, where they have the same value, and j is the
average of all ranks that these samples take;

2. Let RNi =
∑N

j=1 1{Xj≤Xi}. (uprank)

However, we will assume the distribution from which the sample is continuous. It
means that the case above will be a null set.

note2. the pair (X(i), R) is a sufficient statistic for any system of distributions
determined by densities.

Linear Rank Statistic

N∑
i=1

aN(i, RNi)

for a given (N × N) matrix (aN(i, j)). This is the sum of the elements of the
matrix (aN(i, j)).

Example 4. Let X = (2, 3, 1). Then

(1, RN1) = (1, 2)

(2, RN2) = (2, 3)

(3, RN3) = (3, 1).

Thus, the position of the matrix can be shown asa11 a12 ⃝
⃝ a22 a23
a31 ⃝ a33

 .

Simple Linear Rank Statistics

N∑
i=1

cNiaN,RNi
;

This is a form of the sum of the elements of the matrix multiplied by some coef-
ficients. Comparing the definition of linear rank statistics, the function of i and
RNi is decomposed into two parts–the function of i and the function of RNi. It
also can be seen as the form of a linear combination of the function of ranks.

Coefficients

(cN1, . . . , cNN);
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Scores

(aN1, . . . , aNN).

i-th Smallest Coordinate

oi(x),

and obviously x(i) = oi(x).

The System where the Distribution of (X1, . . . , XN) is Symmetric and
Determined by a Density

p(xr1 , . . . , xrN ) = p(x1, . . . , xN), r ∈ R,

if and only if p ∈ H∗.

The System where the Observation is iid

p =
N∏
i=1

f(xi),

where f(x) may be an arbitrary one-dimensional density if and only if p ∈ H0.
note. H0 ⊂ H∗.

Incomplete Beta Function Ratio Iz(a,b)

F (x) = Ix(a, b) =

∫ x

0
ta−1(1− t)b−1 dt

B(a, b)
, 0 ≤ x ≤ 1; a, b > 0.

The mean of Beta distribution is a
a+b

, the mode is a−1
a+b−2

, the variance is ab
(a+b)2(a+b+1)

,

the coefficient of variation is
√

b
a(a+b+1)

, and the skewness is 2(b−a)
√
a+b+1

(a+b+2)
√
ab

.

F.2 Some Lemmas

Lemma F.1. If X is governed by the density q, then X(·) is governed by the
density

q̄(x(1), . . . , x(N)) ≜
∑
r∈R

q(x(r1), . . . , x(rN )), x(·) ∈ X(·).

Moreover,

Q(R = r|X(·) = x(·)) =
q(x(r1), . . . , x(rN ))

q̄(x(1), . . . , x(N))
, r ∈ R, x(·) ∈ X(·),

holds with Q being the probability distribution corresponding to q.

89



Proof. For any A ∈ A(·), it holds that∫
· · ·
∫
X(·)∈A

q(x1, . . . , xN)dx1 . . . dxN =
∑
r∈R

∫
· · ·
∫
X(·)∈A,R=r

q(x1, . . . , xN)dx1 . . . dxN

=
∑
r∈R

∫
· · ·
∫
A

q(x(r1), . . . , x(rN ))dx(1) . . . dx(N)

Note that the Jacobian is 1 in this case.

note. q̄ do not have to be equal to each other. See the following example.

Example 5. Let Ω = (1, 2, 3) and the probability on it is defined as

(p1, p2, p3) = (
1

4
,
1

4
,
1

2
).

After taking one sample from Ω, we will have the sample set like one of the following
three cases:

Ω′ = (1, 3), (p1, p3) = (
1

3
,
2

3
);

Ω′ = (2, 3), (p2, p3) = (
1

3
,
2

3
);

Ω′ = (1, 2), (p1, p2) = (
1

2
,
1

2
).

Then the probability for (x(1), x(2)) will be 5
12
, and the probability for (x(2), x(1))

will be 7
12
. Furthermore,

q̄(1, 2) =
1

6
;

q̄(2, 3) =
5

12
;

q̄(1, 3) =
5

12
.

This example is a special case, and what we will think next is the property on
the system 7.8 and 7.9.

Lemma F.2. Let X1, . . . , XN be a random sample from a continuous distribution
function F with density f. Then

(1) the vectors XN() and RN are independent;

(2) the vector XN() has density N !
∏N

i=1 f(xi) on the set x1 < · · · < xN ;
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(3) the variable XN(i) has density N
(
N−1
i−1

)
F (x)i−1(1 − F (x))N−if(x); for F the

uniform distribution on [0, 1], it has mean i/(N + 1) and variance i(N − i +
1)/((N + 1)2(N + 2));

(4) the vector RN is uniformly distributed on the set of all N ! permutations of
1, 2, . . . , N ;

(5) for any statistic T and permutation r = (r1, . . . , rN) of 1, 2, . . . , N,

E(T (X1, . . . , XN)|RN = r) = ET (XN(r1), . . . , XN(rn));

(6) for any simple linear rank statistic T =
∑N

i=1 cNiaN,RNi
,

ET = Nc̄N āN ; VarT =
1

N − 1

N∑
i=1

(cNi − c̄N)
2

N∑
i=1

(aNi − āN)
2.

Proof.

(1)-(4) It is obvious from Lemma 1.

(5) Just change the rotation of the random variables, then we can see it by the
virtue of the independence between XN() and RN .

(6) From P (RNi = j) = 1
N
,

ET =
1

N

N∑
i=1

cNiaNi = Nc̄N āN .

The second statement is from a very tedious calculation.

note. The sufficient condition for this lemma is very important. Rank statistics
are not always distribution-free but when the observations are independent and
identically distributed.

Corollary F.3. As the same condition, the variable XN(i) has density

FN(i)(x) = IF (x)(i, N − i+ 1) =
N !

(i− 1)!(N − i)!

∫ F (x)

0

ui−1(1− u)N−i du.
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F.3 The Necessary Condition for Asymptotically Normal-
ity

The scores are generated through a given function ϕ : [0, 1] → R in one of two
ways. Either

aNi = Eϕ(UN(i)), (F.1)

where UN(1), . . . , UN(N) are the order statistics of a sample of size N from the
uniform distribution on [0, 1]; or

aNi = ϕ(
i

N + 1
). (F.2)

For well-behaved functions ϕ, these two definitions are closely related and al-
most identical, since EUN(i) =

i
N+1

.

note. Scores of the first type correspond to the locally most powerful rank tests;
scores of the second type are attractive in view of their simplicity.

Examples of Scores

1. The standard normal case: ϕf (x) = x; (I = 1);

2. The standard logistic case: ϕf (x) =
π√
3
(2F (x)− 1); (I = π2

9
);

3. The standard logistic case: ϕf (x) =
√
2sign(x); (I = 2).

Before look into the theorem on the rank, first we introduce a useful theorem.

Theorem F.4. Let Sn be linear spaces of random variables with finite second
moments that contain the constants. Let Tn be random variables with projections
Ŝn onto Sn. If VarTn/VarŜn → 1 then

Tn − ETn
sdTn

− Ŝn − EŜn

sdŜn

p−→ 0.

Proof. Take the expectation of the left side term, then we can see that it is 0.
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Next think about the variance about the left side term.

Var

[
Tn − ETn

sdTn
− Ŝn − EŜn

sdŜn

]
= 2− 2Cov

(
Tn − ETn

sdTn
,
Ŝn − EŜn

sdŜn

)

= 2− 2
Cov(Tn, Ŝn)

sdTnsdŜn

= 2− 2
VarŜn

sdTnsdŜn

→ 0,

which shows the convergence in second mean.

According to Theorem E.4., we have the following theorem:

Theorem F.5. Let RN be the rank vector of an i.i.d. sample X1, . . . , XN from
the continuous distribution function F . Let the scores aN be generated according
to (F.1) for a measurable function ϕ that is not constant almost everywhere, and

satisfies
∫ 1

0
ϕ2(u) du <∞. Define the variables

TN =
N∑
i=1

cNiaN,RNi
, T̃N = Nc̄N āN +

N∑
i=1

(cNi − c̄N)ϕ(F (Xi)).

Then the sequences TN and T̃N are asymptotically equivalent in the sense that

ETN = ET̃N

and
Var(TN − T̃N)

VarTN
→ 0.

The same is true if the scores are generated according to (F.2) for a function ϕ
that is continuous and almost everywhere, is nonconstant, and satisfies

1

N

N∑
i=1

ϕ2(
i

N + 1
) →

∫ 1

0

ϕ2(u) du <∞.

Proof. Set Ui = F (Xi), then from Lemma E.2(5), it is seen that

E(ϕ(Ui)|RN) = E(ϕ(UN,RNi
)) = aN,RNi

a.s.

This implies that

E(T̃N |RN) = Nc̄N āN +
N∑
i=1

(cNi − c̄N)aN,RNi
= TN
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in almost surely mean. If, from Lemma E.2(6),

VarTN

VarT̃N
=

N

N − 1

Var aN,RN1

Varϕ(U1)
→ 1,

then the conclusion is obtained by the theorem E.4.
In fact,

E(aN,RN1
− ϕ(U1))

2 → 0,

which implies the convergence above. This statement is shown by martingale
convergence theorem, since each rank vector Rj−1 is a function of the next rank
vector Rj, it is also true that

aN,RN1
= E(ϕ(U1)|R1, . . . , RN) a.s.

Square-integrability implies the uniformly integrability, which further implies that
the martingale convergence theorem is true. We omit the proof that ϕ(U1) is
measurable w.r.t R1, R2, . . . although it is also important to show

Eϕ(U1) = E(ϕ(U1)|R1, . . . ).

The second statement is shown as follows: Set bN i = ϕ( i
N+1

), and show the
statistics generated by aNi and bNi are asymptotically equivalent. By the theorem
E.4.,

RN1

N + 1
→ U1 in quadratic mean,

since

E(U1 |RN1) =
RN1

N + 1
,

and

Var
RN1

N + 1
→ 1

12
= VarU1.

This implies

1

N

N∑
i=1

(aNi − bNi)
2 → 0,

which shows

Var(SN − TN)

VarTN
=

∑N
i=1(aNi − bNi − (āN − b̄N))

2∑N
i=1(aNi − āN)2

→ 0,

which completes the proof.
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Theorem F.6 (Lindeberg-Feller central limit theorem). For each n let Yn,1, . . . , Yn,kn
be independent random variables. Suppose E(Yn,i) = 0, E(Y 2

n,i) = σ2
n,i < ∞ and

s2n =
∑kn

i=1 σ
2
n,i. If

1

s2n

kn∑
i=1

E[Y 2
n,i1{|Yn,i| > ϵsn} → 0, for every ϵ > 0,

Then
kn∑
i=1

Yn,i
sn

d−→ N (0, 1).

Theorem F.7 (a special central limit theorem). Let Y1, Y2, . . . be independent
copies of a random variable with finite expectation µ and finite variance σ2. Put

Ta =
N∑
i=1

aiYi, a ∈ A.

Then for
max1≤i≤N a

2
i∑N

i=1 a
2
i

→ 0,

the statistics Ta are asymptotically normal (µa, σ
2
a) with

µa = µ
N∑
i=1

ai, σ2
a = σ2

N∑
i=1

a2i .

The theorem above is an extension of Lindeberg-Feller central limit theorem. Note
that the sufficient condition in the rank statistics case is

max1≤i≤N(cNi − c̄N)
2∑N

i=1(cNi − c̄N)2
→ 0. (F.3)

Proof. From theorem E.6., we only have to show the Lindeberg condition

σ−2
a

N∑
i=1

∫
|x|>ϵσa

x2 dP (ai(Yi − µ) ≤ x) → 0.

To see this,∫
|x|>ϵσa

x2 dP (ai(Yi − µ) ≤ x) = a2i

∫
|yai|>ϵσa

y2dP (Yi − µ ≤ y)

≤ a2i

∫
|y|>ϵσνa

y2dP (Yi − µ ≤ y),

95



where

ν2a =
N∑
i=1

a2i / max
1≤i≤N

a2i .

Hence

σ−2
a

N∑
i=1

∫
|x|>ϵσa

x2 dP (ai(Yi − µ) ≤ x) ≤ σ−2

∫
|y|>ϵσνa

y2 dP (Y1 − µ ≤ y) → 0.

Corollary F.8. If the vector of coefficients cN satisfies (F.3), and the scores
are generated according to (F.1) for a measurable, nonconstant, square-integrable
function ϕ, then the sequence of standardized rank statistics

(TN − ETN)

sdTN

d−→ N (0, 1).

The same is true if the scores are generated by (F.2) for a function ϕ that is
continuous almost everywhere, is nonconstant, and satisfies

1

N

N∑
i=1

ϕ2(
i

N + 1
) →

∫ 1

0

ϕ2(u) du.

The next central limit theorem is a case for dependent random variables.

Theorem F.9 (Dependent central limit theorem).
Suppose Tn =

∏kn
j=1(1 + itXn,j) and Sn =

∑kn
i=1Xn,i.

Assume for all real t,

1. ETn → 1,

2. {Tn} is uniformly integrable,

3.
∑

j X
2
n,j

p−→ 1,

4. maxj≤kn |Xn,j|
p−→ 0.

Then,

Sn
d−→ N (0, 1).

note. Note that

eix = (1 + ix) exp{−x
2

2
+ r(x)}.

A generalized CLT for rank is given as follows. The proof is quite involved and
we do not show it in this Thesis.
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Theorem F.10 (Rank central limit theorem). Let TN =
∑
cNiaN,RNi

be the simple
linear rank statistic with coefficients and scores such that

max
1≤i≤N

|aNi − āN |∑n
i=1(aNi − āN)2

→ 0;

max
1≤i≤N

|cNi − c̄N |∑N
i=1(cNi − c̄N)2

→ 0.

Let the rank vector RN be uniformly distributed on the set of all N ! permutations
of { 1, 2, . . . , N }. Then the sequence

TN − ETN
sdTN

d−→ N (0, 1),

if and only if, for every ϵ > 0,∑∑
(i,j):

√
N |aNi−āN ||cNi−c̄N |>ϵANCN

|aNi − āN |2|cNi − c̄N |2

A2
NC

2
N

→ 0,

where

A2
N =

n∑
i=1

(aNi − āN)
2, C2

N =
N∑
i=1

(cNi − c̄N)
2.
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