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Chapter 1

Fundamental Mathematics

1.1 Operators

1.1.1 vec

For any p× q matrix A, we call vec(A) the vector got by putting aij in row (j + 1)p+ i.

1.1.2 ⊗

For matrices A(1) (p1 × q1) and A(2) (p2 × q2), the Kroneker product A(1) ⊗ A(2) is defined by

the components a
(1)
ij a

2
kl in row (i − 1)p2 + k (1 ≤ (i − 1)p2 + k ≤ p1p2), column (j − 1)q2 + l

(1 ≤ (i− 1)p2 + k ≤ q1q2).

1.2 Algebra

Let (Ω,F , P ) be a probability-measure space. The expectation operator E is defined as an integra-
tion on Ω, that is,

EX =

∫
Ω

X(ω)P (dω). (1.1)

E is well know to be a linear map. Suppose X and Y is defined on Ω and a is a constant.

E(X + Y ) = E(X) + E(Y ), (1.2)

E(aX) = aE(X). (1.3)

The covariance between two jointly distributed real-valued random variables X and Y is defined
as

Cov(X,Y ) = E(XY )− E(X)E(Y ). (1.4)

1
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When X = Y almost surely, we call it the variance of X.
The random variables are denoted by the capital letters and the constants are denoted by the

small letters. The algebra of covariance is given by

Cov(X,X) = Var(X), (1.5)

Cov(X,Y ) = Cov(Y,X), (1.6)

Cov(aX, bY ) = abCov(X,Y ), (1.7)

Cov(X + a, Y + b) = Cov(X,Y ). (1.8)

In general, we have

Cov(
∑
i

Xi,
∑
j

Yj) =
∑
i

∑
j

Cov(Xi, Yj), (1.9)

Var(
∑
i

aiXi) =
∑
i

∑
j

aiajCov(Xi, Xj). (1.10)

1.2.1 Geometric Series

A famous formula for the sum of geometric series is given by

N∑
t=1

zt = z
1− zN

1− z
. (1.11)

Example 1.1 Let λk = 2πk
n , k = 0,±1, . . . ,±(n− 1). Then

n∑
t=1

eitλk =

{
n for k = 0,

0 otherwise.
(1.12)

The example shows the finite Fourier transform of any random variables at nonzero natural fre-
quencies is invariant to centering.

1.3 Calculus

Suppose that the real functions f and g are defined on an interval T . Then on this interval,

inf
T
(f + g) ≥ inf

T
f + inf g, (1.13)

sup
T

(f + g) ≤ sup
T
f + sup g. (1.14)

Furthermore, if f and g are also nonnegative on T , then
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inf
T
(f · g) ≥ inf

T
f · inf g, (1.15)

sup
T

(f · g) ≤ sup
T
f · sup g. (1.16)

Example 1.2 Set f(x) = 1/x and g(x) = x for x ∈ T = [1, 2].

1.3.1 Inequalities

There are 2 basic equations:

(a+ b)k ≥ ak + bk if k ≥ 1, (1.17)

(a+ b)k ≤ ak + bk if 0 ≤ k ≤ 1. (1.18)

1.3.2 Examples

There is a condition, called Gordin’s condition

∞∑
k=0


∞∑
j=k

α(j)2


1/2

<∞ (1.19)

in time series analysis. This condition implies

∞∑
j=0

|α(j)| <∞, (1.20)

and
∞∑
j=0

α(j)2 <∞, (1.21)

and is implied by
∞∑
j=0

j|α(j)| <∞. (1.22)

In fact, for any k ≥ 0,

|α(k)| = (α(k)2)1/2 ≤

 ∞∑
j=k

α(j)2

1/2

, (1.23)

which implies

∞∑
k=0

|α(k)| ≤
∞∑
k=0

 ∞∑
j=k

α(j)2

1/2

. (1.24)
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Also, ( ∞∑
j=0

α(j)2
)1/2

<
( ∞∑
j=0

(j + 1)α(j)2
)1/2

(1.25)

=
( ∞∑
j=0

j∑
k=0

α(j)2
)1/2

(1.26)

=
( ∞∑
k=0

∞∑
j=k

α(j)2
)1/2

(1.27)

≤
∞∑
k=0

( ∞∑
j=k

α(j)2
)1/2

(1.28)

On the other hand, we can see that

∞∑
k=0


∞∑
j=k

α(j)2


1/2

≤
∞∑
k=0

∞∑
j=k

|α(j)|

=

∞∑
j=0

j∑
k=0

|α(j)|

=

∞∑
j=0

(j + 1)|α(j)|.

1.4 Measure Theory

First, we give Levesgue’s monotone convergence theorem.

Theorem 1.3 (monotone convergence theorem) Let (S,Σ, µ) be a measurable space. Let f1,
f2, . . . be a pointwise non-decreasing non-negative sequence of measurable functions, i.e.,

0 ≤ fk(x) ≤ fk+1(x) for any k ≥ 1 and any x ∈ S. (1.29)

If the sequence converges pointwise to a function f , then f is measurable and

lim
k→∞

∫
fk dµ =

∫
f dµ. (1.30)

One of the most important theorems in measure theory is Lebesgue’s dominated convergence
theorem.

Theorem 1.4 (Lebesgue’s dominated convergence theorem) Let {fn} be a sequence of real-
valued measurable functions on a measure space (S,Σ, µ). Suppose that the sequence converges
pointwise to a function f and is dominated by some integrable function g, i.e.,
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|fn(x)| ≤ g(x) (1.31)

for all numbers n and all x ∈ S. Then f is integrable and

lim
n→∞

∫
S

|fn − f | dµ = 0. (1.32)

Another important theorem is that the integration is absolutely continuous with respect to the
measure space.

Theorem 1.5 Suppose that f is integrable. Then,

µ(A) → 0 ⇒
∫
A

f dµ→ 0. (1.33)

Proof. Let fn be defined by

fn :=

{
f if |f | ≤ n,

n if |f | > n.
(1.34)

By monotone convergence theorem, we have∫
S

|f | dµ = lim
n→∞

∫
S

|fn| dµ. (1.35)

Therefore, the conclusion is implied by the inequality∣∣∣∫
A

f dµ
∣∣∣ ≤ ∫

A

|f | − |fn| dµ+

∫
A

|fn| dµ ≤
∫
S

|f | − |fn| dµ+ nµ(A). (1.36)

1.4.1 Karamata’s Theorem

Definition 1.6 (Regular Varying) A measurable function U : R+ → R+ is regularly varying at
∞ with index ρ if for x > 0,

lim
t→∞

U(tx)

U(t)
= xρ. (1.37)

ρ is called the exponent of variation. If ρ = 0 then U is called slowly varying. Slowly varying
functions are generically denoted by L(x).

Note that U(x) is regularly varying at ∞ if and only if U(x−1) is regularly varying at 0.

Theorem 1.7 (i) If ρ ≥ −1 then U ∈ RVρ implies∫ x

0

U(t)dt ∈ RVρ+1 (1.38)

and

lim
x→∞

xU(x)∫ x

0
U(t)dt

= ρ+ 1. (1.39)



6

If ρ < −1 or if ρ = −1 with
∫∞
x
U(s)ds <∞, then U ∈ RVρ implies

∫∞
x
U(t)dt is finite,∫ ∞

x

U(t)dt ∈ RVρ+1 (1.40)

and

lim
x→∞

xU(x)∫ x

0
U(t)dt

= −ρ− 1. (1.41)

(ii) If U satisfies

lim
x→∞

xU(x)∫ x

0
U(t)dt

= λ ∈ (0,∞), (1.42)

then U ∈ RVλ−1. If
∫∞
x
U(t)dt <∞ and

lim
x→∞

xU(x)∫∞
x
U(t)dt

= λ ∈ (0,∞), (1.43)

then U ∈ RV−λ−1.

1.5 Functional Analysis

Consider

f(ω) =

∞∑
n=0

(An cosnω +Bn sinnω),

where
∑∞

n=0(|An|+ |Bn|) <∞. The values of f determined on any interval of length 2π. A standard
choice is the interval T = (−π, π], where we identify 2π-periodic functions on R with functions on
T. The alternative way to representate it is to rewrite it in the complex form

f(ω) =

∞∑
n=−∞

Cne
inω. (1.44)

Theorem 1.8 Suppose that
∑

n∈Z |Cn| <∞. Then f defined by (1.44) is a continuous function on
T. The coefficients are obtained as

Cn =
1

2π

∫ π

−π

f(ω)e−inωdω, n ∈ Z. (1.45)

If g is any other L1 function on T, we have the Fourier reciprocity formula

1

2π

∫ π

−π

f(ω)g(ω)dω =
∑
n∈Z

CnD−n

where Dn is the Fourier coefficient of g, defined by (1.45) with f replaced by g. In particular we
have Parseval’s identity
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1

2π

∫ π

−π

|f(ω)|2dω =
∑
n∈Z

|Cn|2.

[Inverse Fourier transformation]

Note that if f(ω) has a peak at λ, then Cn repeat itself on average after 2π/λ. By the inverse
Fourier transform, we have

Ck+2π/λ =
1

2π

∫ π

−π

f(ω)e−i(k+2π/λ)ω) dω (1.46)

=
1

2π

∫ π

−π

f(ω)e−ikωe−i dω (1.47)

(1.48)

Proposition 1.9 Suppose that
∑

n∈Z |nkCn| <∞ for some k = 2, 3, . . . . Then f(ω) :=
∑∞

−∞ Cne
inω

is a k-times defferentiable function with f (k)(ω) =
∑

n∈Z(in)
kCne

inω a continuous function.

Corollary 1.10 The convolution of an absolutely convergent trigonometric series f with an arbi-
trary L1 function g has the representation

1

2π

∫ π

−π

f(ω)g(λ− ω)dω =
∑
n∈Z

CnDne
inλ.

1.5.1 Factorial and Bessel Functions

Let Cn = 0 for n ≤ 0 and Cn = rn/n! where r ≥ 0 and n = 1, 2, . . . . Then we have

f(ω) =

∞∑
n=0

rn

n!
einθ =

∞∑
n=0

(reiθ)n

n!
= exp(reiθ),

and then
rn

n!
=

1

2π

∫ π

−π

exp(reθ) exp(−inω)dω, r ≥ 0, n = 0, 1, . . . .

Here we define I(2r) as

I(2r) =

∞∑
n=0

(
rn

n!

)2

=
1

2π

∫ π

−π

exp(2r cosω)dω, r ≥ 0.
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1.5.2 integration

Whether m = n or m 6= n ∫ π

−π

cos(mω) sin(nω) dω = 0 (1.49)

When m 6= n then ∫ π

−π

cos(mω) cos(nω) dω = 0 (1.50)∫ π

−π

sin(mω) sin(nω) dω = 0 (1.51)∫ π

0

sinmω sinnω dω = 0 (1.52)

When m = n(6= 0) then ∫ π

−π

cos(mω) cos(nω) dω = π (1.53)∫ π

−π

sin(mω) sin(nω) dω = π (1.54)

When m = n = 0 then ∫ π

−π

cos(mω) cos(nω) dω = 2π (1.55)∫ π

−π

sin(mω) sin(nω) dω = 0 (1.56)

1.6 The Hermite polynomials

We introduce the Hermite polynomials used in the area of probability and statistics. They have a
little different definitions in the area of physics. The Hermite polynomials Hn(x) are defined by the
relations ( d

dx

)n

e−
x2

2 = (−1)nHn(x)e
− x2

2 (n = 0, 1, . . . ). (1.57)

As a note, the Hermite polynomials H̃n(x) in physics are defined by

H̃n(x) = 2n/2Hn(
√
2x).

Hn(x) is a polynomial of degree n, and we have
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H0(x) = 1, (1.58)

H1(x) = x, (1.59)

H2(x) = x2 − 1, (1.60)

H3(x) = x3 − 3x, (1.61)

H4(x) = x4 − 6x2 + 3, (1.62)

H5(x) = x5 − 10x3 + 15x, (1.63)

H6(x) = x6 − 15x4 + 45x2 − 15, (1.64)

· · ·

Note that
dk+1

dxk+1
Hk(x) ≡ 0, for k = 0, 1, . . . ,

we obtain by repeated partial integration∫ ∞

−∞
Hm(x)Hn(x)dΦ(x) =

{
n! if m = n,

0 if m 6= n.
(1.65)

Therefore, { 1√
n!
Hn(x)} is the sequence of orthogonal polynomials associated with the normal dis-

tribution. With the idea of exponential generating function, we have

∞∑
k=0

Hk(x)

k!
tk = e−

t2

2 +tx, (1.66)

and
∞∑
k=0

Hk(x)

k!

Hk(y)

k!
tk =

1√
1− t2

e
− t2x2+t2y2−2txy

2(1−t2) , (1.67)

1.7 The Appell polynomials

An extension of the Hermite polynomials is the class of the Appell polynomial. The Appell poly-
nomials are defined by

∞∑
k=0

Ak(x)

k!
tk =

etx

EetX
, z ∈ C, (1.68)

and then
d

dx
Aj(x) = jAj−1(x). (1.69)

1.8 Probability

Suppose the random variables X and Y are independent with distribution function
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F(X,Y )(x, y) = FX(x)FY (y). (1.70)

Evaluation of EX1(Y + αX < 0) with EX = 0 is interesting in time series analysis.

EX1(Y + aX < 0) =

∫
R2

x1(y + αx < 0)dFX(x)dFY (y) (1.71)

=

∫
R
xPY (Y < −αx)dFX(x) (1.72)

= EXXFY (−αX). (1.73)

Since the distribution function is nondecreasing,

FY (−αX1(X > 0)) ≥ FY (−αX1(X ≤ 0)) a.s. if α < 0, (1.74)

FY (−αX1(X > 0)) ≤ FY (−αX1(X ≤ 0)) a.s. if α > 0. (1.75)

Thus EXXFY (−αX) 6= 0 if α 6= 0.

Theorem 1.11 Suppose that for each u, Xun  Xu as n → ∞, and that Xu  X as u → ∞.
Suppose further that

lim
u→∞

lim sup
n→∞

P{ρ(Xun, Yn) ≥ ε} = 0 (1.76)

for each posetive ε. Then Yn  X as n→ ∞.

The quantiles of X is defined by quantile function

ξ0(τ) := inf{x : P (X ≤ x) ≥ τ}. (1.77)

1.8.1 Conditional Expectation

Theorem 1.12 (Jensen’s Inequality) Let φ be a convex function. Then for any random variable
X and σ-field H,

φ(E(X|H)) ≤ E(φ(X)|H). (1.78)

Theorem 1.13 (Tower property) If σ-field H ⊂ G, then

E(E(X|G)|H) = E(X|H) = E(E(X|H)|G). (1.79)

Example 1.14 Suppose X ∈ Lp with σ-field G. Then

E|X|p ≥ E(E(|X| | G)p) ≥ (E|X|)p. (1.80)

For the variance of conditional expectation, the following equation is well known:

V (X) = E(V (X|Y )) + V (E(X|Y )). (1.81)
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1.8.2 Generalized Domain of Attraction

Let X be a real Banach space, that is, X is a real linear, normed, complete space, with norm ‖·‖.
By X∗ we denote its topological dual Banach, that is, x∗ ∈ X∗ are continuous linear functionals on
X, and 〈 ·, · 〉 is the dual pair between X∗ and X. When the norm in X is given by a scalar product,
X is called a Hilbert space. In that case, X∗ is isomorphic to X and the dual pair is simply the
scalar product. Furthermore, all real separable Hilbert spaces are isomorphic to l2, the space of all
real square-summable sequences with

〈x, y 〉 :=
∑
i

xiyi, ‖x‖ := 〈x, x 〉1/2.

The collection L(X,Y ) of all bounded linear operators from X into Y , using the operator norm,
is also Banach space. Here, the assumption that A is bounded and linear is equivalent to A being
continuous and linear form X to Y , where the topologies are given by the norms. When X = Y ,
L(X,Y ) is denoted by End(X); in which case, we also have that the product of two operators in
End(X) is a continuous linear operator: if A,B ∈ End(X), then AB : X → X is given by (AB)x =
A(Bx) for x ∈ X. Moreover, ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ End(X). With this multiplication of
operators, End(X) becomes a topological semigroup. By Aut(X), we denote the set of all invertible
operators in End(X). These inverse are also continuous and linear, so Aut(X) is a topological group.

Theorem 1.15 Let ξn, ξ be Rd-valued random variables. Then ξn converges in distribution to ξ in
Rd if and only if for every a ∈ Rd, 〈a, ξn〉 converges in distribution to 〈a, ξ〉 in R1.

Lemma 1.1 Consider symmetrization of µ, i.e. µ0 := µ ∗ µ−. Then the characteristic function of
µ0 is real-valued.

Lemma 1.2 In the case of a separable metric space, suppµ always exists. suppµ = {x ∈ X :
for every open G containing x, µ(G) 6= 0}.

Proposition 1.16 Let µ, ν ∈ P(X). Then

supp(µ ∗ ν) = (suppµ+ supp ν).

A more general proposition is given as follows:

Proposition 1.17 Let µ be a probability on the topological space S1 and let f : S1 → S2 be a
continuous mapping into the topological space S2. Then

fµ = fsuppµ

In particular, for Banach spaces X and Y , probability µ on X, and a bounded linear operator
A : X → Y , we obtain

supp(Aµ) = A(suppµ).

Proposition 1.18 Let µ ∈ P(X). Then (suppµ)⊥ = {x∗ ∈ X∗ : µ̂(tx∗) = 1 for all t ∈ R1}.
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1.8.3 Infinitely Divisible and Stable

Definition 1.19 A probability µ on a Banach space X is said to be infinitely divisible if for each
integer n ≥ 2 there exists an element µn ∈ P(X) such that µn

n = µ, where the nth power of a
probability is taken in the sense of convolution.

Definition 1.20 A measure µ ∈ P is called operator-stable if there are a measure ν ∈ P, a sequence
{An} of linear operators, and a sequence {an} of vectors such that

Anν
nδ(an) ⇒ µ.

1.8.4 Basic Concepts

We say that a measure µ on Rd is full if its support is not contained in any proper hyperplane of
Rd, that is, for any x in Rd and any subspace W of Rd with dimW < d, we have µ(W + x) < 1.

1. The idea of fullness is the natural extension of nondegeneracy on R1.
2. It is shown that the set of all full measures is an open subsemigroup of P(Rd).

Generally, the set of all full measures on Rd is denoted by F(Rd). Also the set H(µ) is defined
as

H(µ) = {y ∈ Rd; µ̂(y) = 1}.

Proposition 1.21 The following statements are equivalent.

1. µ is full.
2. µ0 is full.
3. H(µ0) does not contain any one-dimensional subspace.
4. For each y 6= 0, the measure Πyµ is nondegenerate on R where Πy(x) = 〈x, y 〉 for x ∈ Rd.

Corollary 1.22 Let A ∈ End(Rd) and µ ∈ P(Rd). Then Aµ is full if and only if A is invertible
and µ is full.

For the Banach space X, let A(X) denote the set of all affine transformations on X, that is, each
α ∈ A(X) is given by an operator A ∈ End(X) and a vector a ∈ X, α := 〈A; a〉, in the following
way:

αx := Ax+ a.

In the same way, rα := 〈rA; ra〉. The set A(X) is equipped by the norm

‖α‖ := max{ ‖A‖, ‖a‖ },

then it is a Banach space.

Corollary 1.23 Let αn, α ∈ A(X), and assume αnx → αx for all x ∈ X. Then µn ⇒ µ in P(X)
implies that αnµn ⇒ αµ.

By AI , we denote the set of all invertible affine transformations on Rd.
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Corollary 1.24 If αnµn ⇒ µ with µn ∈ P, µ ∈ F , and αn ∈ A, then αn ∈ AI and µn is full for
all sufficiently large n.

Next, we introduce the concept which is called ”conditionally compact”. (The concept is called
”relatively compact” in some books.)

Definition 1.25 A subset Γ of P(S) is called conditionally compact if every sequence {µn} in Γ
contains a subsequence which is weakly convergent in P(S); the limit probability need not be in Γ .

Definition 1.26 A subset Γ of P(S) is called tight if for every ε > 0, there is a compact set K
such that µ(K) > 1− ε for all µ ∈ Γ .

Theorem 1.27 (Prohorov’s Theorem) For a metric space S, every tight set Γ in P(S) is con-
ditionally compact. When S is separable and complete, Γ being conditionally compact implies that
Γ is tight.

Lemma 1.3 If µn ⇒ µ with µ full and if {αnµn} is tight, where αn ∈ A, then sup‖αn‖ <∞, that
is, {αn} is conditionally compact in A.

In the convergence of types theorems, a fundamental role is played by the set of operators having
the property that the limit measure µ is unchanged by the action of one of these operators. More
formally, we define the invariant semigroup of µ, Inv(µ), to be

Inv(µ) = {α ∈ A : µ = αµ}.

Theorem 1.28 If µ is full, then Inv(µ) is a compact subgroup of AI . Conversely, if µ is nonfull,
then Inv(µ) is neither a group nor compact.

Lemma 1.4 Let µ ∈ P and α ∈ AI . Then

Inv(αµ) = α(Inv(µ))α−1.

Definition 1.29 Two measures µ and ν are of the same operator type provided there is α ∈ A
such that µ = αν.

Theorem 1.30 Assume that βnµn ⇒ µ, where βn ∈ A, µn ∈ P, and µ full. In order that αnµn ⇒
ν, with αn ∈ A and ν full, it is necessary and sufficient that ν = αµ for some α ∈ AI , that is, µ
and ν are of the same operator type, and, for all sufficiently large n,

αn = αηnγnβn,

where ηn → η0 = 〈I; 0〉 and γn ∈ Inv(µ).

1.8.5 Notations and Assumptions

In the sequent subsection, we assume that X,X1, X2, X3, . . . are i.i.d on Rd with common distribu-
tion µ and that µ belongs to the strict generalized domain of attraction of some full operator stable
law ν on Rd with no normal component. If X belongs to the generalized domain of attraction of Y ,
then there exist linear operator An and nonrandom vectors an such that
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An(X1 +X2 + · · ·+Xn)− an ⇒ Y.

For An, we say a sequence of linear operators on Rd is regularly varying with index (−E) if

A[tn]A
−1
n → t−E ,

for all t > 0. As in the Meerschaert and Scheffler (1999), the notation t−E means t−E =
exp(−E log t) where exp(A) = I +A+A2/2! + · · · is the usual exponential operator. Sn is used to
be the sum of the sample,

Sn = X1 + · · ·+Xn,

while Mn is used to represent the sample covariance matrix, i.e.

Mn =

n∑
i=1

XiX
′
i.

We give three lemmas from Meerschaert and Scheffler (1999) below.

Lemma 1.5 Suppose that µ is regularly varying with exponent E and

nAnµ→ φ

holds. If every eigenvalue of E has real part exceeding 1/2 then

AnMnA
∗
n ⇒W

where W is infinitely divisible on Md
s with Lévy representation [C, 0, Tφ ].

Lemma 1.6
(AnSn, AnMnA

∗
n) ⇒ (Y,W ).

Lemma 1.7 If AnSn ⇒ Y and AnMnA
∗
n ⇒W hold with An = a−1

n I then M
−1/2
n Sn ⇒W−1/2Y .

If α of marginal distribution of X1 are different, it is easy to see that we can take

An = diag (n−1/α1 , . . . , n−1/αd),

and E becomes
E = diag (1/α1, . . . , 1/αd).

Here, we only think the case that αi = α for i = 1, . . . , d.
We give three general lemmas, which is examined by Meerschaert and Scheffler (1999).

Lemma 1.8 Suppose that µ is regularly varying with exponent E and

nAnµ→ φ

holds. If every eigenvalue of E has real part exceeding 1/2 then

AnMn,ZA
∗
n ⇒M
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where M is infinitely divisible on Md
s with Lévy representation [C, 0, Tφ ]. Furthermore, the limit

M is operator stable with exponent where ξM = EM +ME∗.

Lemma 1.9
(AnSn, AnMn,ZA

∗
n) ⇒ (Y,M).

Lemma 1.10 If AnSn ⇒ Y and AnMn,ZA
∗
n ⇒ M hold with An = a−1

n I then M
−1/2
n,Z Sn ⇒

M−1/2Y .

1.9 Statistics

1.9.1 Useful Results

Prohorov’s Theorem can be simplified to the following form if the random vectors Xn are in Rk.

Definition 1.31 A set of random vectors {Xλ λ ∈ Λ} is called uniformly tight if for every ε > 0,
there exists a constant M such that

sup
λ∈Λ

P (‖Xλ‖ > M) < ε. (1.82)

Corollary 1.32 Let Xn be random vectors in Rk. Then

(i) If Xn  X, then {Xn : n ∈ N} is uniformly tight;
(ii) If Xn is uniformly tight, then there exists a subsequence with Xnj

 X as j → ∞ for some
X.

1.9.2 Inequalities in Statistics

Suppose a random variable X has finite mean µ and finite variance σ2. Then for any real ε > 0,

P (|X − µ| > ε) ≤ σ2

ε2
. (1.83)

It is easy to see that for i.i.d random variables Xi’s, we have

Var

n∑
i=1

Xi ≤
n∑

i=1

EX2
i . (1.84)

However, if Xi’s are not mutually independent, then an easy calculus leads to

Var

n∑
i=1

Xi ≤ n

n∑
i=1

EX2
i . (1.85)

The inequality is not useful since it is not sharp enough. In stead of (1.85),
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ES2
n = nEX2 + 2

n−1∑
k=1

(n− k)EX1Xk, (1.86)

if the mean of X is 0. If the second term in the right hand side of (1.86) is absolutely summable,
Sn can be evaluated by

1

n
ES2

n = EX2 + 2

n−1∑
k=1

(n− k)EX1Xk, (1.87)

that is, 1/nES2
n is asymptotically EX2 +

∑n−1
k=1 EX1Xk.

1.10 U-statistics

Let X1, . . . , Xn be independent observations on a distribution F . Consider a parameter function
θ = θ(F ) for which there is an unbiased estimator. That is,

θ(F ) = EF {h(X1, . . . , Xm)}. (1.88)

for some function h = h(x1, . . . , xm), called a kernel. Without loss of generality, we can assume that
h is symmetric in all its arguments. If not, the kernel can be replaced by the symmetric kernel

1

m!

∑
p

h(xi1 , . . . , xim), (1.89)

where
∑

p denotes summation over the m! permutations (i1, . . . , im) of (1, . . . ,m).
The U-statistic for estimation of θ is defined as

Un = U(X1, . . . , Xn) =
1(
n
m

) ∑
c

h(Xi1 , . . . , Xim), (1.90)

where
∑

c denotes summation over the
(
n
m

)
combinations of m distinct elements {i1, . . . , im} from

{1, . . . , n}. Obviously, Un is also an unbiased estimator of θ.
We list up common U-statistics here for reference. [For m = 1]

Example 1.33 (Mean)
h(x) = x. (1.91)

Remark 1.34 There are a lot of kernels to define ”mean”. It is not necessary to have ”mean” in
the case that m = 1. We just give a formal way to define U-statistics. Other examples of U-statistics
below are also defined in the easiest way.

Example 1.35 (Sample distribution function)

h(x) = I(x ≤ t0). (1.92)

Example 1.36 (Sample kth moment)

h(x) = xk (1.93)
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Example 1.37
h(x) = γ(x). (1.94)

[For m = 2]

Example 1.38
h(x1, x2) = x1x2. (1.95)

Example 1.39 (Variance)

h(x1, x2) =
1

2
(x1 − x2)

2. (1.96)

Example 1.40 (Gini’s mean difference)

h(x1, x2) = |x1 − x2|. (1.97)

Example 1.41 (Wilcoxon one-sample statistic)

h(x1, x2) = I(x1 + x2 ≤ 0). (1.98)

[For m = 5]

Example 1.42 (A measure of dependence for a bivariate distribution F )
Let

ψ(z1, z2, z3) = I(z2 ≤ z1)− I(z3 ≤ z1) (1.99)

and then the kernel h is defined as

h((x1, y1), (x2, y2), . . . , (x5, y5)) =
1

4
ψ(x1, x2, x3)ψ(x1, x4, x5)ψ(y1, y2, y3)ψ(y1, y4, y5). (1.100)

For any kernel h, we define hc as

hc(x1, . . . , xc) = EF {h(x1, . . . , xc, Xc+1, . . . , Xm)}, (1.101)

for 1 ≤ c ≤ m− 1 such that

hc(x1, . . . , xc) = EF {hc+1(x1, . . . , xc, Xc+1)}. (1.102)

Define ζ0 = 0 and, for 1 ≤ c ≤ m,

ζc = VarF {hc(X1, . . . , Xc)}. (1.103)

It is known that U-statistic has asymptotic normality as follows:

Theorem 1.43 If EFh
2 <∞ and ζ1 > 0, then

n1/2(Un − θ) N (0,m2ζ1). (1.104)





Chapter 2

Models in Statistics

2.1 Models for i.i.d. Samples

We give some density functions of i.i.d. random variables in this section. The possible parameters
of the distribution are given after the semicolon.

Example 2.1 (Exponential distribution) If X1, . . . , Xn are distributed as exponential distribu-
tion, then the density function is given by

f(x;λ) = λe−λx. (2.1)

The mean and the variance of the distribution are given by

E(X1) =
1

λ
, (2.2)

V (X1) =
1

λ2
. (2.3)

Example 2.2 (Weibull distribution) If X1, . . . , Xn are distributed as Weibull distribution, then
the density function is given by

f(x; k, θ) = kθ−kxk−1e−(x/θ)k . (2.4)

The mean and the variance of the distribution are given by

E(X1) = θΓ (1 + k−1), (2.5)

V (X1) = θ2(Γ (1 + 2k−1)− Γ 2(1 + k−1)). (2.6)

Example 2.3 (Gamma distribution) If X1, . . . , Xn are distributed as Gamma distribution, then
the density function is given by

f(x;α, β) =
xα−1e−x/β

Γ (α)βα
. (2.7)

The mean and the variance of the distribution are given by

19
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E(X1) = αβ (2.8)

V (X1) = αβ2. (2.9)

In warranty analysis, the renewal process is usually modeled by exponential distribution for a
given failure rate λ. To distinguish the increasing failure rate and the decreasing failure rate, the
Weibull distribution is considered in the field. The Weibull distribution with 0 < k < 1 is used
for the decreasing failure rate and with k > 1 for the increasing failure rate. We call k the index
of the failure rate. For a given k, if the model with Weibull distribution has the same mean with
exponential distribution, then θ is determined by

θ =
1

λΓ (1 + k−1)
. (2.10)

Furthermore, the idea can be generated to Gamma distribution with the identical mean, variance
and the index of the failure rate. For a given k,

α =
Γ 2(1 + k−1)

Γ (1 + 2k−1)− Γ 2(1 + k−1)
, (2.11)

β =
Γ (1 + 2k−1)− Γ 2(1 + k−1)

λΓ 2(1 + k−1)
. (2.12)

[distributions]

2.2 Models of Time Series

Consider a stationary time series Xt with auto-covariance function γX(j) := EX0Xj −EX2
0 at lag

j. Define

fX(λ) =
1

2π

∑
j∈Z

γX(j)eijλ, λ ∈ (−π, π]. (2.13)

From Theorem 1.8, it is shown that fX(λ) is continuous and further symmetric about 0 if∑
j∈Z

|γX(j)| <∞. (2.14)

However, the problem with the usual spectral density can be found is the following examples.

Example 2.4 (Linton and Whang (2007)) Suppose

Xt = ξ0(τ0) + εtv(εt−1, . . . ), (2.15)
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where {εt} is a sequence of i.i.d. random variables with τ0 = P (εt < 0) and v a measurable function.
The spectral density of {Xt} is fX(λ) = γX(0)/(2π) contains no information about the process since
Xt is an unicorrelated time series.

2.2.1 Nonlinear time series model

Suppose {Xt}t∈Z is a nonlinear process defined by

Xt = Y (εt, εt−1, . . . ), (2.16)

where {εt}t∈Z is a sequence of i.i.d. copies of a random variable ε and Y is a measurable function.
Let {ε′i} be an i.i.d. copy of {εi} and ξ′i = (. . . , ε′i−1, ε

′
i) the shift process of ξi = (. . . , εi−1, εi).

For I ⊂ Z, define

εj,I =

{
ε′j if j ∈ I,

εj if j 6∈ I.
(2.17)

Definition 2.5 (Functional or physical dependence measure) For p > 0 and I ⊂ Z, let
δp(I, n) = ‖g(ξn)− g(ξn,I)‖p and δp(n) = ‖g(ξn)− g(ξ∗n)‖p.

Definition 2.6 (Predictive dependence measure) Let p ≥ 1 and gn be a Borel function on
R∞ → R such that gn(ξ0) = E(Xn|ξ0), n ≥ 0. Let ωp(I, n) = ‖gn(ξ0) − gn(ξ0,I)‖p and ωp(n) =
‖gn(ξ0)− gn(ξ

∗
0)‖p.

Remark 2.7 The interpretation of gn(·) can be seen by

gn(ξ0) = E(Xn|ξ0) = E(g(ξn)|ξ0). (2.18)

Definition 2.8 (p-stability) Let p ≥ 1. The process {Xn} is said to be p-stable if Ωp :=∑∞
n=0 ωp(n) <∞, and p-strong stable if ∆p :=

∑∞
n=0 δp(n) <∞.

2.2.2 Quantiles

The variable of interest for the quantile analysis is defined by

Vt(τ, ξ) = τ − 1{Xt < ξ}, (τ, ξ) ∈ (0, 1)× R. (2.19)

Let ξ0(τ) be defined as in (1.77). For simplicity, we define

Vt(τ) = Vt(τ, ξ0(τ)). (2.20)

Note that

Vt(τ) =

{
τ − 1 if Xt < ξ0(τ),

τ if Xt ≥ ξ0(τ).
(2.21)
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Interestingly, if the quantile τ is chosen by researcher, then Vt(τ) is obviously a random variable
corresponding to Xt. If {Xt} is weakly stationary, then {Vt} is also weakly stationary. If we further
suppose the distribution function of Xt is continuous at ξ0(τ), then it is easy to see that

E Vt(τ) = 0, (2.22)

VarVt(τ) = (1− τ)τ. (2.23)

Since {Vt} is a zero mean weakly stationary process, we define its spectral density as

fV (ω) =
1

2π

∑
j∈Z

γV (j)e
ijω, (2.24)

where

γV (j) = EV0(τ)Vj(τ) =


(τ − 1)2 if X0 < ξ0(τ) and Xj < ξ0(τ),

τ(τ − 1) if X0 < ξ0(τ) and Xj ≥ ξ0(τ), or X0 ≥ ξ0(τ) and Xj < ξ0(τ),

τ2 if X0 ≥ ξ0(τ) and Xj ≥ ξ0(τ).

(2.25)
When we turn our attention from the usual periodogram to the quantile periodogram, we have

to first estimate ξ0(τ). The estimate ξ̂n(τ) can be achieved by the following check function

ξ̂n(τ) = min
x∈R

n∑
t=1

ρτ (Xt − x), (2.26)

which is proposed in Koenker and Bassett (1978). Let the corresponding periodogram be defined
by

In,τ (λ) =
1

2π

∣∣∣n−1/2
n∑

t=1

V̂t(τ)e
−itλ

∣∣∣2, (2.27)

where V̂t(τ) = Vt(τ, ξ̂n(τ)).
For estimation of ξ0(τ), we need the following assumptions given in Hagemann (2013). Let {εt}t∈Z

be an i.i.d. copies of {εt}t∈Z and suppose

X ′
t = Y (εt, . . . , ε1, ε

∗
0, ε

∗
−1, . . . ). (2.28)

Assumption 2.1 For a given τ ∈ (0, 1), there exists δ > 0 and σ ∈ (0, 1) such that

sup
ξ∈Xr(δ)

‖1{Xn < ξ − 1{X ′
n < ξ}}‖ = O(σn), (2.29)

where Xr(δ) = {ξ ∈ R; |ξ0(τ)− ξ| ≤ δ}.

Assumption 2.2 The distribution function FX of X0 is Lipschitz continuous in a neighborhood of
ξ0(τ) and has a positive and continuous density at ξ0(τ).

Theorem 2.9 Let λn = 2πjn/n with jn ∈ Z be a sequence of natural frequencies such that λn →
λ ∈ (0, π) with fV (λ) > 0. Under Assumptions 2.1 and 2.2, for any fixed k ∈ Z, the collection of
quantile periodograms
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In,τ (λn − 2πk/n), In,τ (λn − 2π(k − 1)/n), . . . , In,τ (λn + 2πk/n), (2.30)

converges jointly in distribution to independent exponential variables with mean fV (λ).

Define X∗
t = Y (εt, . . . , ε1, ε

∗
0, ε−1, . . . ).

Assumption 2.3 For a given τ ∈ (0, 1) and Xτ (δ) as in Assumption 2.1, there exists a δ > 0
such that

∞∑
t=0

sup
ξ∈Xτ (δ)

‖1{Xt < ξ} − 1{X∗
t < ξ}‖ <∞. (2.31)

Define

W = { w is bounded and continuous, w(x) = w(−x) for all x ∈ R, w(0) = 1,

w̄(x) := sup
y≥x

|w(y)| satisfies
∫ ∞

0

w̄(x) dx <∞, W (λ) := (2π)

∫ −∞

−∞
w(x)e−ixλ dx satisfies

∫ −∞

−∞
|W (λ)| dλ <∞.}

Theorem 2.10 Under Assumptions 2.2, 2.3, if w ∈ W , Bn → ∞ and Bn = o(
√
n), then

f̂V (λ)
P−→ fV (λ) (2.32)

uniformly in λ ∈ (−π, π].

Assumption 2.4 There is some n∗ such that for all n > n∗, FX̃(x) := P (X̃0 ≤ x) is Lipschitz
continuous in a neighborhood of ξ0(τ) and E|Xn −X ′

n| = O(ρn) for some ρ ∈ (0, 1).

Theorem 2.11 Under Assumptions 2.2, 2.4, if w is even and Lipschitz continuous with with sup-
port [−1, 1], w(0) = 1, limx→0(1− w(x))/|x|3 <∞, Bn → ∞, Bn = o(n1/4), n = o(B7

n), then

|mn/Bn|(f̂V (λ)− fV (λ)) N (0, σ2(λ)), (2.33)

where σ2(λ) = (1 + h(2λ))fV (λ)
∫ 1

−1
w(x)2 dx, and h(λ) = 1 if λ = 2πk for some k ∈ Z and 0

otherwise.
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2.3 Stationary, Absolutely Regular Processes

2.3.1 Regularity

Let Mb
a be the σ-algebra generated by x(n), a ≤ n ≤ b, Mb if a = −∞ and M−∞ for the

intersection of all Mb.

Definition 2.12 The process x(n) is said to be regular if M−∞ is trivial.

Suppose T is the automorphism of M∞ induced by x(n) → x(n + 1). Regularity implies weak
mixing, namely

lim
N→∞

1

N

N−1∑
n=0

|P (A ∩ TnB)− P (A)P (B)| ↓ 0, for all A,B ∈ M−∞. (2.34)

2.3.2 Stationarity, ergodicity and mixing conditions

Let {ξi,−∞ < i < ∞} be a p-dimensional sequence of stochastic vectors defined on a probability
space (Ω,A, P ). For a ≤ b, let Mb

a denote the σ-algebra of events generated by ξa, . . . , ξb.

Definition 2.13 The process satisfies the φ-mixing condition if

φ(n) = sup
B∈M0

−∞,A∈M∞
n

1

P (B)
|P (A ∩B)− P (A)P (B)| ↓ 0 (2.35)

The process is called uniformly mixing.

Definition 2.14 The process is called absolutely regular, if

β(n) = sup
a∈Z

E{ sup
A∈M∞

a+n

|P{A|Ma
−∞} − P (A)|} ↓ 0. (2.36)

Definition 2.15 The process satisfies Rosenblatt’s strong mixing condition if

α(n) = sup
B∈M0

−∞,A∈M∞
n

|P (A ∩B)− P (A)P (B)| ↓ 0. (2.37)

Simply, we call the process strong mixing.

Example 2.16 (Kolmogorov and Rozanov (1960)) A Gaussian stationary process is strongly
mixing if it has a continuous positive spectral density function.

Example 2.17 (Andrews (1984)) The autoregressive process is not strong mixing when the in-
novations are i.i.d. Bernoulli random variables.

Definition 2.18 The process is strictly stationary and absolutely regular, if
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β(n) = E{ sup
A∈M∞

n

|P{A|M0
−∞} − P (A)|} ↓ 0 (2.38)

as n→ ∞.

Definition 2.19 The process is said to be uniformly mixing if

φ(n) = sup
a∈Z,A∈Ma

1 ,B∈M∞
a+n

max{|P (A|B)− P (A)|, |P (B|A)− P (B)|} ↓ 0. (2.39)

Remark 2.20 Processes which are absolutely regular maintain the property under time reveral, but
this is not the case for uniformly mixing processes.

Remark 2.21 (Relationships between the conditions for the process)
∗-mixing ⇒ uniformly mixing in both directions of time ⇒ uniformly mixing ⇒ absolutely regular
⇒ Rosenblatt’s strong mixing

Example 2.22 Let {ξt} be a m-dependent process. Then the process is uniformly mixing.

Example 2.23 Let ξt = aξt−1 + εt, where εt is i.i.d. N (0, 1) and |a| < 1. Then the process {ξt} is
strong mixing but not uniformly mixing.

Proposition 2.24 Let {ξt} be a strictly stationary process. If the process is strong mixing, then it
is ergodic.

Proof. See Rosenblatt (1978).

Remark 2.25 Mixing conditions is more general since it is defined for the processes that are not
necessarily strictly stationary.

Remark 2.26 See Billingsley [pp. 182-186].

Remark 2.27 Measurable functions of mixing processes are mixing and of the same size. Note
that whereas functions of ergodic processes retain ergodicity for any τ , finite or infinite, mixing is
guaranteed only for finite τ .

Suppose that {ξi} is a p-dimensional strictly stationary, absolutely regular process with distri-
bution function F (x).

Let i1 < i2 < · · · < ik be arbitrary integers. For any j(1 ≤ j ≤ k − 1), put

P
(k)
j (E(j) × E(k−j)) = P (ξi1 , . . . , ξij ) ∈ E(j))P ((ξij+1

, . . . , ξik) ∈ E(k−j)) (2.40)

and
P

(k)
0 (E(k)) = P ((ξi1 , . . . , ξik) ∈ E(k)) (2.41)

where E(i) is a Borel set in Rip.

Example 2.28 (Difference between P
(k)
0 and P

(k)
j ) Suppose X1 = X2 a.s. with each marginal

distribution defined by

X1 =

{
−1, w.p. 12 ,

1, w.p. 12 ,
X2 =

{
−1, w.p. 12 ,

1, w.p. 12 .
(2.42)
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Then

P (X1 = 1, X2 = 1) =
1

2
, (2.43)

but

P (X1 = 1)P (X2 = 1) =
1

4
. (2.44)

On the other hand,
P (X1 = 1, X2 = −1) = 0, (2.45)

but

P (X1 = 1)P (X2 = −1) =
1

4
. (2.46)

2.3.3 Basic Lemmas

Lemma 2.1 For any j(0 ≤ j ≤ k − 1), let h(x1, . . . , xk) be a Borel function such that∫
Rkp

|h(x1, . . . , xk)|1+δdP
(k)
j ≤M (2.47)

for some δ > 0. Then

|
∫
Rkp

h(x1, . . . , xk)dP
(k)
0 −

∫
Rkp

h(x1, . . . , xk)dP
(k)
j | ≤ 4M1/(1+δ)βδ/(1+δ)(ij+1 − ij). (2.48)

Proof. The proof of the Lemma depends on the definition of absolute regularity and the represen-
tation of Rozanov and Volkonskii (1961).

Let
n−[r] = {n(n− 1) · · · (n− r + 1)}−1. (2.49)

For every c(0 ≤ c ≤ m), let

gc(x1, . . . , xc) =

∫
R(m−c)p

g(x1, . . . , xm)dF (xc+1) . . . dF (xm), (2.50)

and

U (c)
n = n−[c]

∑
1≤i1<···<ic≤n

∫
Rcp

gc(x1, . . . , xc)

c∏
j=1

d[u(x− ξij )− F (xj))] (2.51)

where u(v) is equal to one when all the p components of ν are non-negative; otherwise, u(v) = 0.Then

Un = θ(F ) +

m∑
c=1

(
m

c

)
U (c)
n . (2.52)

Lemma 2.2 If there is a positive number δ such that for r = 2 + δ,

µr =

∫
Rpm

|g1(x1, . . . , xm)|rdF (x1), . . . , dF (xm) ≤M0 <∞ (2.53)
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and for all integers i1, i2, . . . , im(i1 < i2 < · · · < im),

νr = E|g(ξi1 , ξi2 , . . . , ξim)|r ≤M0 <∞ (2.54)

hold. Further, for some δ′(0 < δ′ < δ) and β(n) = O(n−(2+δ′)/δ′), then we have

E(U (c)
n )2 = O(n−1−γ), 2 ≤ c ≤ m, (2.55)

where γ = 2(δ − δ′)/(δ′(2 + δ)) > 0.

Lemma 2.3 If there is a positive number δ such that for r = 4 + δ,

µr =

∫
Rpm

|g1(x1, . . . , xm)|rdF (x1), . . . , dF (xm) ≤M0 <∞ (2.56)

and for all integers i1, i2, . . . , im(i1 < i2 < · · · < im),

νr = E|g(ξi1 , ξi2 , . . . , ξim)|r ≤M0 <∞ (2.57)

hold. For some δ′(0 < δ′ < δ) and β(n) = O(n−3(4+δ′/(2+δ′))), then we have

E(U (2)
n )4 = O(n−3−γ′

) (2.58)

where γ′ = 6(δ − δ′)/{(4 + δ)(2 + δ)′} > 0 and

E(U (c)
n )2 = O(n−3), 3 ≤ c ≤ m. (2.59)

Lemma 2.4 If the conditions of Lemma 2.2 are satisfied, then

E(V (c)
n )2 = O(n−1−γ) (1 ≤ c ≤ m). (2.60)

Lemma 2.5 If the conditions of Lemma 2.3 are satisfied, then

E(V (2)
n )4 = O(n−3−γ′

) (2.61)

and
E(V (c)

n )2 = O(n−3) 3 ≤ c ≤ m. (2.62)

2.4 Limiting Behavior of U-Statistics for Stationary, Absolutely Regular
Processes

Consider a functional

θ(F ) =

∫
Rmp

g(x1, . . . , xm)dF (x1) · · · dF (xm) (2.63)

defined over F = {F : |θ(F )| < ∞, where g(x1, . . . , xm) is symmetric in its m arguments. As an
estimator of θ(F ), we define a U-statistic
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UN =

(
N

m

)−1 ∑
1≤i1<···<im≤n

g(ξi1 , . . . , ξim), N ≥ m. (2.64)

Also, we consider a von Mises’ differentiable statistical functional θ(FN ) defined by

θ(FN ) = N−m
N∑

i1=1

· · ·
N∑

im=1

g(ξi1 , . . . , ξim), N ≥ 1. (2.65)

We denote by

σ2
N = E(

N∑
r=1

ĥ1(Xt))
2 (2.66)

the exact variance, and denote by

σ2 = E(ĥ1(X1))
2 + 2

∑
t>1

Ehĥ1(X1)ĥ1(Xt) (2.67)

its asymptotic variance if the sum converges absolutely. Here, σ2 = limN−1σ2
N .

Theorem 2.29 Let g : X m → R be a non-degenerate kernel. Then the asymptotic distribution of
N

mσN
(UN (g)− θ(F )) is N (0, 1) provided one of the following conditions is satisfied:

(a) {Xn}n≥1 is uniformly mixing in both directions of time, σ2
N → ∞ and for some δ > 0,

sup
1≤t1<···<tm

E|g(X1, . . . , Xm)|2+δ <∞. (2.68)

(b) {Xn}n≥1 is uniformly mixing in both directions of time with mixing coefficients φ(n) satisfying∑
φ(n) <∞, σ2 6= 0 and

sup
1≤t1<···<tm

E(g(X1, . . . , Xtm))2 <∞. (2.69)

(c) {Xn}n≥1 is absoulutely regular with coefficients β(n) satisfying
∑
β(n)δ/(2+δ) < ∞ for some

δ > 0, σ2 6= 0 and
sup

1≤t1<···<tm

E|g(Xt1 , . . . , Xtm)|2+δ <∞. (2.70)

The same statement holds for v. Mises’ functionals when the supremum in (a)-(c) is replaced
by the supremum over all choices of 1 ≤ ti(1 ≤ i ≤ m).

Theorem 2.30 If g : X m → R is a non-degenerate kernel, then

γ(N) = sup
x∈R

|P ( N

mσN
)(UN − θ(F ) ≤ x− 1

2π

∫ ∞

−∞
exp(− t

2

2
) dt| → 0 (2.71)

under each of the following conditions:

(a) {Xn}n≥1 is uniformly mixing in both directions of time, σ2
N → ∞ and
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sup
1≤t1<···<tm

E|g(X1, . . . , Xtm)|3 <∞. (2.72)

In this case
γ(N) = O((λN log λN )1/3) (2.73)

where λN = max{2φ1/6([Nβ ]), N−α} and where 0 < α < 1
5 , 0 < β < 1− 5α denote constants.

(b) {Xn}n≥1 is uniformly mixing in both directions of time with coefficients φ(n) satisfying φ(n) =
O(qn) for some 0 < q < 1, σ2 6= 0 and

sup
1≤t1<···<tm

E|g(X1, . . . , Xtm)|3 <∞. (2.74)

Here
γ(N) = O(N−1/3+λ) for each λ > 0. (2.75)

(c) {Xn} is absolutely regular with coefficients β(n) satisfying β(n)δ/(2+δ) = O(n−2+ε) for some
0 < δ ≤ 1, 0 ≤ ε < 1, σ2 6= 0, and

sup
1≤t1<···<tm

E|g(X1, . . . , Xtm)|2+δ <∞. (2.76)

In this case γ(N) = O(N−λ) where λ = (1− ε)δ/144.

Next, let C be the space of all continuous real-valued functions on [0, 1], where we give C the
uniform topology. For every n ≥ m, let Xn = {Xn(t), 0 ≤ t ≤ 1} be a random element in C defined
by

Xn(t) =


0 for 0 ≤ t ≤ (m− 1)n,

k(Uk − θ(F ))/(mσn1/2) for t = k/n, m ≤ k ≤ n,

linearly interpolated for t ∈ [k/n, (k + 1)/n], m− 1 ≤ k ≤ n− 1.

(2.77)

Similarly, let X∗
n = {X∗

n(t), 0 ≤ t ≤ 1} be a random element in C defined by

X∗
n(t) =


0 for 0 ≤ t = 0,

k(Uk − θ(F ))/(mσn1/2) for t = k/n, 1 ≤ k ≤ n,

linearly interpolated for t ∈ [k/n, (k + 1)/n], 0 ≤ k ≤ n− 1.

(2.78)

Let W = {W (t), 0 ≤ t ≤ 1} be a standard Brownian motion.

Theorem 2.31 If there is a positive number δ such that for r = 4 + δ,

µr =

∫
Rpm

|g1(x1, . . . , xm)|rdF (x1), . . . , dF (xm) ≤M0 <∞ (2.79)

and for all integers i1, i2, . . . , im(i1 < i2 < · · · < im),

νr = E|g(ξi1 , ξi2 , . . . , ξim)|r ≤M0 <∞ (2.80)

hold. Also for some δ′(0 < δ′ < δ)
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β(n) = O(n−3(4+δ′)/(2+δ′)) (2.81)

then, both Xn and X∗
n converge weakly to W and ρ(Xn, X

∗
n) → 0 as n→ ∞.

Let C0(⊂ C) be the space of continuous functions on [0, 1] vanishing at 0, with the uniform
topology and for each ω ∈ Ω, define the functions Yn(t, ω) and Y

∗
n (t, ω) in C0 as follows:

Yn(t, ω) =
Xn(t, ω)

(2 log log nσ2)frac12
, n ≥ max(m, 3/σ2) (2.82)

and

Yn(t, ω) =
X∗

n(t, ω)

(2 log log nσ2)frac12
, n ≥ 3/σ2. (2.83)

Furthermore, we denote by K the subset of C0 consisting of all functions h(t) absolutely continuous
with respect to Lebesgue measure such that∫ 1

0

ḣ2(t) dt ≤ 1, (2.84)

where ḣ(t) stands for the Radon-Nikodym derivative of h.

Theorem 2.32 If the conditions in Theorem 2.31 are satisfied, then for almost all ω ∈ Ω, the
sequence of functions {Yn(t, ω), n ≥ maxm, 3/σ2} and {Y ∗

n (t, ω), n ≥ 3/σ2} are preconpact in C0

and their derived sets coincides with the set K

Exercise 2.1 Show (2.22) and (2.23).

2.4.1 GARCH process

A GARCH(1,1) process is given by the equations

Xt = σtZt, t ∈Z , (2.85)

where (Zt) is an i.i.d. sequence with EZ = 0 and Var(Z) = 1, and

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 = α0 + σ2

t−1Ct−1, Ct = α1Z
2
t + β1. (2.86)



Chapter 3

Convergence in Probability

3.1 Convergence in Probability

Lemma 3.1 (Convexity Lemma) Let {λn(θ) : θ ∈ Θ} be a sequence of random convex functions
defined on a convex, open subset Θ of Rd. Suppose λ(·) is a real-valued function on Θ for which

λn(θ)
P−→ λ(θ) for each θ ∈ Θ. Then for each compact subset K of Θ,

sup
θ∈K

|λn(θ)− λ(θ)| P−→ 0. (3.1)

The function λ(·) is necessarily convex on Θ.

3.2 Almost Sure Convergence

Let Sn =
∑n

i=1Xi for n ≥ 1.

Lemma 3.2 (Kolmogorov’s strong law of large numbers) Suppose Xi’s are independent and

∞∑
i=0

E(Xi − EXi)
2/i2 <∞, (3.2)

then
1

n
(Sn − ESn) → 0 a.s. (3.3)

If we suppose Xi’s are independent and identically distributed, then we have the following result.

Corollary 3.1 Suppose {Xi} are independent and identically distributed. If E|Xi| <∞, then

1

n
(Sn − nEX1) → 0 a.s. (3.4)

If, in addition, E|X1|p <∞ for some 1 < p < 2, then

31
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1

n1/p
(Sn − nEX1) → 0 a.s. (3.5)

3.3 Weak Convergence

Let {Xi, i = 1, . . . } be a stationary Gaussian sequence with EXi = 0 and EX2
i = 1. Let G(Xi)

have mean 0 and finite variance. Consider

ZN (t) =
1

dN

[Nt]∑
i=1

G(Xi), (3.6)

where 0 ≤ t ≤ 1 and d2N is asymptotically proportional to Var
∑N

i=1G(Xi). The weak convergence
is understood to hold in D[0, 1].

For a probability measure P on (D,D), let TP consist of those t in [0, 1] for which the projection
πt is continuous except at points forming a set of P -measure 0. The points 0 and 1 always lie in
TP . If 0 < t < 1, then t ∈ TP if and only if P (Jt) = 0, where

Jt = {x;x(t) 6= x(t−)}. (3.7)

Define
w′′

x(δ) = sup
t1≤t≤t2
t2−t1≤δ

min{|x(t)− x(t1)|, |x(t2)− x(t)|}. (3.8)

Theorem 3.2 (Billingsley (1968)’s Theorem 15.4) Suppose that

Pnπ
−1
t1···tk ⇒ Pπ−1

t1···tk (3.9)

holds whenever t1, . . . , tk all lie in TP . Suppose further that P (J1) = 0. Suppose finally that, for
each positive ε and η, there exist a δ, 0 < δ < 1, and an integer n0 such that

Pn{x : w′′
x(δ) ≥ ε} ≤ η, n ≥ n0. (3.10)

Then Pn ⇒ P .

Theorem 3.3 (Billingsley (1968)’s Theorem 15.6) Suppose that

(Xn(t1), . . . , Xn(tk)) (X(t1), . . . , X(tk)) (3.11)

holds whenever t1, . . . , tk all lie in TP ; that P (J1) = 0; and that

P{|Xn(t)−Xn(t1)| ≥ λ, |Xn(t2)−Xn(t)| ≥ λ} ≤ 1

λ2γ
(F (t2)− F (t1))

2α (3.12)

for t1 ≤ t ≤ t2 and n ≥ 1, where γ ≥ 0, α > 1
2 , and F is nondecreasing, continuous function on

[0, 1]. Then Xn  X in D[0, 1].
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3.3.1 The Hermite Rank m

Let X denote a stand normal random variable and define

G = {G;EG(X) = 0, EG2(X) <∞}. (3.13)

G is then a subset of

L2(R,
e−

x2

2

√
2π

) = {G; 1√
2π

∫ −∞

−∞
G2(x) exp(−x

2

2
)dx <∞}. (3.14)

Note that the Hermite polynomials form a complete orthogonal system of functions in L2(R, e
−x2/2
√
2π

).

Introduce the projection J(q) as

J(q) = EG(X)Hq(X), (3.15)

and define the Hermite rank of G as

m = min
q∈N

(q; J(q) 6= 0). (3.16)

For example, odd powers ofX have Hermite rank 1. Even powers ofX with their mean subtracted
have Hermite rank 2. The Hermite polynomial Hm has Hermite rank m.

3.3.2 Fractinoal Brownian Motion and The Rosenblatt Process

Let {Xk} be a normalized stationary Gaussian sequence, and let r(k) ≡ EXiXi+k, k = 1, 2, . . . , be
its correlation kernel. Suppose 0 < H < 1.

Definition 3.4 (The class Gm)

Gm = {G;G ∈ G, G has Hermite rank m}. (3.17)

Note that
G = G∞ ∪ G1 ∪ G2 ∪ · · · , (3.18)

with Gi ∩ Gj = ∅, if i 6= j, and where G∞ ≡ {G(x) ≡ 0}.

Definition 3.5 (The class (m)(D,L(·))) For any positive integer m, {Xi} ∈ (m)(D,L(·)) if
r(k) ∼ k−DL(k) as k → ∞ with 0 < D < 1

m and L slowly varying.

Note that
(m2)(D,L(·)) ⊂ (m1)(D,L(·)), m2 > m1. (3.19)

Definition 3.6 (The class (m)′(H,L(·))) For any positive integer m, {Xi} ∈ (m)′(H,L(·)) if

(i) limk→0 r(k) = 0,

(ii)
∑N

i=1

∑N
j=1(r(i− j))m ∼ N2HL(N) as N → ∞,



34

(iii)
∑N

i=1

∑N
j=1|r(i− j)|m = O(N2HL(N)) N → ∞.

Lemma 3.3

{Xi} ∈ (m)(D,L(·)) implies {Xi} ∈ (m)′(1− mD

2
,

2Lm(·)
(1−mD)(2−mD)

). (3.20)

Conversely, suppose that r(k) is monotone decreasing for large k. Then

{Xi} ∈ (m)′(H,L(·)) implies {Xi} ∈ (m)(
2− 2H

m
, [H(2H − 1)L(·)]1/m). (3.21)

Theorem 3.7 Let G ∈ Gm for some m > 1.

(i) If {Xi} ∈ (m)′(H,L(·)), then

Var(

N∑
i=1

G(Xi)) ∼
J2(m)

m!
N2HL(N), N → ∞,

1

2
< H < 1 (3.22)

where J(m) = EG(X)Hm(X).
(ii) If the sequence r(k) is non-negative for large k and converges as k → ∞, then (3.22) entails

{Xi} ∈ (m)′(H,L(·)).

Suppose

ZN,m(t) =
1

dN

[Nt]∑
i=1

Hm(Xi). (3.23)

Definition 3.8 (Properties Π(H) of Z̄(t)) (i) Z̄(0) = 0 a.s.
(ii) Z̄(t) has strictly stationary increments, that is the random function Mh(t) = Z̄(t+ h)− Z̄(t),

h ≥ 0, is strictly stationary.
(iii) Z̄(t) is semi-stable of order H, that is

P{Z̄(ct1) ≤ x1, . . . , Z̄(ctp) ≤ xp} = P{cH Z̄(t1) ≤ x1, . . . , c
H Z̄(tp) ≤ xp} (3.24)

(iv) EZ̄(t) = 0 and E|Z̄(t)|γ <∞ for γ ≤ 1
H .

(v) Z̄(t) is separable and a.s. continuous.

Note that Properties Π(H) are scale-invariant.

Theorem 3.9 Let G ∈ Gm for some m ≥ 1 and suppose {Xi} ∈ (m)′(H,L(·)). If d2N ∼ N2HL(N)
and the finite-dimensional distribution of ZN,m(t) converge, then ZN (t) converges weakly in D[0, 1]

to some process J(m)
m! Z̄m(t) endowed with the properties Π(H).

Definition 3.10 (the fractional Brownian motion process) The fractional Brownian motion
process BH(t), defined for 0 < H < 1, is a Gaussian process endowed with the properties Π(H). In
particular, EBH(t) = 0 and EB2

H(t) = t2H .

In the case m = 1, the limiting process Z̄(t) is the fractional Brownian motion process BH(t). In
the case m = 2, the limiting process Z̄(t) is called the Rosenblatt process.



Chapter 4

Central limit theorems

4.1 The Classical Central Limit Thorems

4.1.1 Introduction

The foundation of asymptotic statistics is central limit theorem (CLT). A sophisticated statistics
are necessarily has a ideal limit of errors of the decision or inference. The definition of loss function
is of course crucial because it has an large effect on the statistics. However, in the common case,
we will set the square error as our loss function, and at the same time, the error of the inference
will be evaluated as the variance between the statistics and the real value.

The initial inference may date back to that of mean. The sample mean X̄, which is defined as

X̄ =
1

n

n∑
i=1

Xi consider X = (Xi)i=1,...,n is independent identical distributed (i.i.d).

are statistics of mean µ of X’s underlined distribution. The statistics is asymptotically normal and
the variance of the error will become smaller and smaller if we increase the number of observations.

In fact, almost all statistics have the property of asymptotically normal (AN), since the inference
not only has to be accurate, it also has to have a small error. The way to decrease error has been
thought in many situations, and the smaller error does not have to has the property of accuracy,
like Jack-knife, which is also studied very much. In the book, we will think the usual case that the
statistics are accuracy, or we call it unbiased.

4.1.2 The Classical Central Limit Theorems

Theorem 4.1 (Multivariate Central Limit Theorem) Let {Xk} be a sequence of i.i.d d-
dimensional random vectors with mean vector µ and covariance matrix Σ. Let X̄ = n−1

∑n
i=1Xi.

Then
n1/2(X̄ − µ)

d−→ N (0, Σ).
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Theorem 4.2 (Cramér-Wold Device) Assume Xn and X are d-dimensional random vectors.
Then

Xn ⇒ X if and only if t′Xn ⇒ t′X for all t ∈ Rk. (4.1)

Theorem 4.3 (Lindeberg Central Limit Theorem) Suppose Xn,1, . . . , Xn,kn
are independent

real-valued random variables for each n. Assume E(Xn,i) = 0 and σ2
n,i = E(X2

n,i) < ∞. Let

s2n =
∑kn

i=1 σ
2
n,i. Suppose for each ε > 0,

kn∑
i=1

1

s2n
E[X2

n,iI{ |Xn,i| } > εsn ] → 0 n→ ∞. (4.2)

Then
kn∑
i=1

Xn,i/sn  N (0, 1). (4.3)

Corollary 4.4 (Lyapounov Central Limit Theorem) Suppose Xn,1, . . . , Xn,kn
are indepen-

dent for each n. Assume that E(Xn,i) = 0 and σ2
n,i = E(X2

n,i) <∞. Let s2n =
∑kn

i=1 σ
2
n,i. Suppose

lim
n→∞

kn∑
i=1

1

s2+δ
n

E[ |Xn,i|2+δ ] = 0holds. (4.4)

Then
kn∑
i=1

Xn,i/sn  N (0, 1). (4.5)

4.2 Central Limit Theorem for M-estimation

4.2.1 Notations

• X1, . . . , Xn ∼ i.i.d. F ;
• ρ: R → R: a continuous convex function;
• Q(ξ) =

∑n
i=1 ρ(xi − ξ);

• Q∗ = infξ Q(ξ)
• [Tn(x) ] = {ξ∗ |Q(ξ∗) = Q∗};
• ψ = ρ′;
• λ(ξ) =

∫
ψ(t− ξ)F (dt).

Lemma 4.1 Assume that

• λ(c) = 0;
• λ(ξ) is differentiable at ξ = c and λ′(c) < 0,
•

∫
φ2(t− ξ)F (dt) si finite and continuous at ξ = c.
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Then n1/2(Tn(x)− c) N (0, V (ψ, F )), where

V (ψ, F ) =

∫
ψ2(t− c)F (dt)/(λ′(c))2. (4.6)

Proof. Let

s2 =

∫
(ψ(t− gσn−1/2))− λ(gσn−1/2))2F (dt), (4.7)

then the yi = (ψ(xi − gσn−1/2) − λ(gσn−1/2))/s are independent random variables with mean 0
and variance 1.

4.3 Functional Central Limit Theorem

4.3.1 Notations

• ξ1, . . . , ξn ∼ i.i.d. F ;
• Sn = ξ1 + · · ·+ ξn;
• C: the space of continuous functions on [0, 1] with uniform topology;
D: the space of càdlàg function on [0, 1] with Skorohod topology, that is, for x, y ∈ D there exist
a λ ∈ Λ such that

sup
t
|λt− t| ≤ ε, (4.8)

sup
t
|x(t)− y(λt)| ≤ ε. (4.9)

Here, Λ denote the class of strictly increasing, continuous mappings of [0, 1] onto itself.
• A random element Xn of C or D by

Xn(t) =
1

σ
√
n
S[nt] + (nt− [nt])

1

σ
√
n
ξ[nt]+1. (4.10)

Theorem 4.5 Suppose the random variables ξn are i.i.d (0, σ2). Then the random functions Xn

satisfy
Xn  W, (4.11)

where W is a Brownian Motion with

EWt = 0, (4.12)

EWsWt = s if s ≤ t. (4.13)
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4.4 Central Limit Theorems on Dependent Sequence

An example by Herrndorf (1983) showed that moment conditions up to second order are not enough
for a standard version of a central limit theorem. This implies that one may need more than
summability of cumulants up to fourth order in the contest of spectral density estimates.

4.4.1 Notations

• (Ω,F , P ): a basic probability space.
• G and H : Two measurable sub-σ-fields of F ,
• φ(G ,H ) = supG∈G , H∈H , P (G)>0|P (H|G)− P (H)|,
• α(G ,H ) = supG∈G , H∈H |P (H ∩G)− P (G)P (H)|.
• Bn

−∞: the smallest collection of subsets of Ω that contains the union of the σ-fields Bn
a as a→ −∞.

• B∞
n+m: the smallest collection of subsets of Ω that contains the union of the σ-fields Ba

n+m as
a→ ∞.

• ‖X‖p := (E|X|p)1/p.

4.4.2 Mixing Inequalities

From (1.15), we obtain

α(G ,H ) ≤ φ(G ,H ) sup
G∈G , H∈H , P (G)>0

|P (G)|, (4.14)

if P (G) 6= 0. Therefore,
φ(G ,H ) = 0 ⇒ α(G ,H ) = 0. (4.15)

Definition 4.6 For a sequence of random vectors {Xt} with Bn
−∞ and B∞

n+m, define the mixing
conefficients,

φ(m) = sup
n
φ(Bn

−∞,B∞
n+m), (4.16)

α(m) = sup
n
α(Bn

−∞,B∞
n+m). (4.17)

If φ(m) → 0 (α(m) → 0) as m→ ∞ (α→ ∞), we say {Xt} is φ-mixing (α-mixing), respectively.

Theorem 4.7 Let g be a measurable function into Rk and define Yt = g(Xt, . . . , Xt+τ ), where τ
is finite. If the sequence of {Xt} is φ-mixing, then Yt is φ-mixing.

Proof. See White and Domowitz (1984, Lemma 2.1).

As indicated in White (2001), whereas functions of ergodic processes retain ergodicity for any τ ,
finite of infinite, mixing is guaranteed only for finite τ .
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Theorem 4.8 Suppose that X and Y are random variables which are G - and H - measurable,
respectively, and X ≤ C1, Y ≤ C2 a.s. Then

|EXY − EXEY | ≤ 4C1C2α(G ,H ). (4.18)

Corollary 4.9 Suppose that X and Y are random variables which are G - and H - measurable,
respectively, and that E|X|p <∞ for some p > 1, while |Y | ≤ C a.s. Then

|EXY − EXEY | ≤ 6C‖X‖pα(G ,H )1−1/p. (4.19)

Corollary 4.10 Suppose that X and Y are random variables which are G - and H -measurable,
respectively, and that E|X|p <∞, E|Y |q <∞, where p, q > 1, p−1 + q−1 < 1. Then

|EXY − EXEY | ≤ 8‖X‖p‖Y ‖qα(G ,H )1−1/p−1/q. (4.20)

Theorem 4.11 Suppose that X and Y are random variables which are G - and H - measurable,
respectively, and that E|X|p <∞, E|Y |q <∞, where p, q > 1, p−1 + q−1 = 1. Then

|EXY − EXEY | ≤ 2‖X‖p‖Y ‖qφ(G ,H )1/p. (4.21)

Further, the result continues to hold for p = 1, q = ∞, where

‖Y ‖∞ = ess sup|Y | = inf{C|P (|Y | > C) = 0}. (4.22)

4.5 Linear Proess

Definition 4.12 {Xn,Fn} is called a mixingale sequence if, for sequences of nonnegative constants
cn and ψm, where ψm → 0 as m→ ∞, we have

• ‖E(Xn|Fn−m‖2 ≤ ψmcn
• ‖Xn − E(Xn|Fn+m)‖2 ≤ ψm+1cn

Example 4.13 (Linear Process) Xn =
∑∞

i=−∞ αi−nξi with
∑∞

i=−∞ α2
i <∞.

Then {Xn,Fn} is a mixingale with all c2n = σ2 and φ2m =
∑

|i|≥m α2
i .

Theorem 4.14 (Ibragimov and Linnik (1971), Taniguchi and Kakizawa (2000)) Let {Xt}
be a linear process

Xn =

∞∑
i=−∞

αi−nξi, (4.23)

with {ξi} a sequence of i.i.d (0, σ2). As n→ ∞, if

σ2
n ≡ E(X1 +X2 + · · ·+Xn)

2 → ∞, (4.24)

then

σ−1
n∑

j=1

Xj  N (0, 1). (4.25)
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Furthermore, the result of the linear process can be extended to a more general case. First, we
define Appell rank m∗ = m∗(G) by

m∗(G) = inf
j
{j : cj 6= 0}, (4.26)

where

G(x) =

∞∑
j=0

Aj(x)

j!
cj . (4.27)

Then Giraitis and Surgailis (1986) gave the following the theorem.

Theorem 4.15 Suppose {Xt} is generated by a linear process

Xn =

∞∑
i=−∞

αi−nξi (4.28)

with all moments finite. Let G(x) be a polynomial with Appel rank m∗ ≥ 2, and let Sn =∑n
t=1G(Xt). Moreover, If

lim inf
n→∞

Var(Sn)

n
> 0, (4.29)

and
∞∑

t=−∞

( ∞∑
s=−∞

|at−sas|
)m∗

<∞, (4.30)

then
Sn

{VarSn}1/2
 N (0, 1). (4.31)

4.5.1 Approach in frequency domain

Consider

x(n) =

∞∑
j=0

β(j)ε(n− j), E{ε(m)ε(n)} = δm,n, (4.32)

under the assumption that
∞∑
j=0

|β(j)| <∞. (4.33)

Easily, we can see that the spectrum of the process is

f(λ) =
1

2π
|
∞∑
j=0

β(j)eijω|2. (4.34)

Here, we consider the regression problem of x(n) on the process y(N)(n) with the following assump-
tions almost surely.
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Assumption 4.1 (Grenandar’s conditions)

(i) limN→∞ d2(N) = ∞, for d2(N) =
∑N

n=1|y(N)(n)|2,
(ii) limN→∞|y(N)(N)|/d(N) = 0,

(iii) limN→∞

{∑N−n
m=1 y

(N)(m)y(N)(m+ n)
}
/d2(N) = ρ(n), n ≥ 0.

Note that ρ(n) has the following representation

ρ(n) =

∫ π

−π

einλFy(dλ), (4.35)

where Fy is an even distribution function. Further, we assume that∫ π

−π

f(λ)Fy(dλ) > 0 a.s. (4.36)

Theorem 4.16 Let x(n) have zero mean and consider y(N)(n) be generated by a process indepen-
dent of x(n) with Grenandar’s conditions. Then

N∑
n=1

{y(N)x(n)}/d(N) (4.37)

converge to the normal distribution with zero mean and variance

2π

∫ π

−π

f(λ)Fy(dλ), (4.38)

if we have any of the following four conditions:

(i) x(n) is regular.
(ii) x(n) is weakly mixing and y(N)(n) is stationary.
(iii) x(n) is ergodic and y(N)(n) = nk cosnλj(N) or y(N)(n) = nk sinnλj(N) where λj(N) (j =

0, 1, . . . ,m) is one of the frequencies which satisfy λ1(N) < · · · < λm(N) and are m frequencies
nearest to λ0 of the form ωt = 2πt/N .

(iv) Without (4.33), x(n) is regular and f(λ) is piecewise continuous with no discontinuous at the
jumps in Fy(λ) and the best linear predictor is the best predictor.

4.5.2 Central Limit Theorem for spectral density estimates

Theorem 4.17 ([104]) Let X = {Xn} be a strictly stationary mixing process with EXj = 0. As-
sume that the cumulant functions of order two and four are summable. Further, let the spectral

density estimate fn(λ) have weights w
(n)
k defined in terms of a function a(·) that is piecewise con-

tinuous, continuous at zero with a(0) = 1, symmetric about zero and is such that xa(x) is bounded.
Let

Y (n)
u (λ) =

c(n)∑
k=−c(n)

XuXu+kw
(n)
k cos kλ
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with w
(n)
k = a(b(n)) and c(n) = αb−1

n for all sufficiently large fixed α. Set

Zn(λ) =

m∑
u=1

Y
(n)
u (λ)

(nb−1
n )1/2

with m = m(n) and c(n) = o(m(n), m(n) = o(n). Consider the distribution function Fn,m(x) of
Zn(λ) and assume that

n

m(n)
inf

|x|>η
x2dFn,m(n)(x) → 0

as n → ∞, bn → 0, nbn → ∞ for each η > 0. Then fn(λ) − Efn(λ) is asymptotically normally
distributed with mean zero and variance

2π(1 + η(λ))

nbn
f2(λ)

∫
W 2(α)dα.



Chapter 5

Asymptotics in Non-regular Case

5.1 Limiting Distribution for L1 Regression Estimation under General
Conditions

5.1.1 Assumptions

(A1) {εi} are i.i.d. random variables with median 0 with distribution function F continuous at 0.
(A2) For some positive definite matrix C,

lim
n→∞

1

n
XT

nXn = C. (5.1)

(A3) For each u,

lim
n→∞

1

n

n∑
i=1

Ψn(u
Txi) = τ(u) (5.2)

for some convex function τ(u) taking values in [0.∞], where {Ψn(t)} is defined as

Ψn(t) =

∫ t

0

√
n(F (s/an)− F (0)) ds, (5.3)

which for each n is a convex function.

5.1.2 Main Result

Theorem 5.1 Assume
Yi = βTxi + εi, (5.4)

where β = (β0, . . . , βp)
T and xi = (1, x1i, . . . , xpi)

T . Define
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Zn(u) =
an√
n

n∑
i=1

[|εi − xT
i u/an| − |εi|]. (5.5)

Under assumptions (A1)–(A3), for any (u1, . . . ,uk),

(Zn(u1), . . . , Zn(uk)) (Z(u1), . . . , Z(uk)), (5.6)

where
Z(u) = −uTW + 2τ(u) (5.7)

with W a (p+ 1)-variate normal random vector with mean vector 0 and covariance matrix C.



Chapter 6

Methods in Statistics

6.1 Bracketing Methods

6.1.1 Introduction

Bracketing arguments have been developed in empirical process theory. The idea is used to prove
the Glivenko-Cantelli theorem, i.e., the uniform law of large numbers.

The empirical distribution function Fn for a sample ξ1, . . . , ξn from a distribution function F on
the real line is defined by

Fn(x) =
1

n

∑
i≤n

1{ξ≤t}(x) for each x ∈ R. (6.1)

The bracketing methods control the difference between the empirical distribution and the distribu-
tion function by an interval t1 ≤ t ≤ t2,

Fn(t1)− F (t2) ≤ Fn(t)− F (t) ≤ Fn(t2)− F (t1). (6.2)

The two bounds converge almost surely to F (t1) − F (t2) and F (t2) − F (t1). If t2 and t1 are
close enough together, then Fn(t)−F (t) is also close enough. Furthermore, if the whole line can be
covered by a union of finitely many such intervals, then supt|Fn(t)− F (t)| is eventually small.

Definition 6.1 A bracket [ l, u ] of a pair of P -integrable functions l ≤ u on X is defined by

[ l, u ] := {g : l(x) ≤ g(x) ≤ u(x) for all x}. (6.3)

For 1 ≤ q ≤ ∞, the bracketing number N
(q)
[ ] (δ,F , P ) for a subclass of functions F ⊂ Lq(P ) is

defined as the smallest value of N for which there exist brackets [ li, ui ] with P(ui − li)
q ≤ δq for

i = 1, . . . , N and F ⊂ ∪i[ li, ui ].
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6.1.2 Some results in L2 theory

Define
ρ(f) = sup

n,i
‖f(ξni)‖2, (6.4)

where ‖ · ‖p is defined by (P| · |p)1/p.

Definition 6.2 The bracketing number N(δ) = N(δ,F) equals the smallest value of N for which
there exist functions f1, . . . , fN in F and b1, . . . , bN with ρ(bi) ≤ δ for each i such that for each f
in F there esixts an i for which |f − fi| ≤ bi.

Example 6.3 Suppose F is a parametric family, i.e.,

F = {f(·, θ) : θ ∈ Θ ⊂ Rk}, (6.5)

where Θ is a bounded subset. Suppose also the Lipschitz condition for f(·, θ) such that

|f(x, θ)− f(x, θ′)| ≤ L(x)|θ − θ′|λ, (6.6)

with supn,i‖L(ξni)‖2 = C <∞. Then for all r small enough,

sup
n,i

P sup
θ′∈B(θ,r)

|f(ξni, θ′)− f(ξni, θ)|2 ≤ C2r2λ for all θ, (6.7)

where B(θ, r) is the ball of radius r around θ. To cover the bounded set Θ, we only have to set fi
at the centers of the O(rk) many balls of radius r = (δ/C)1/λ. The bracketing numbers is given by
O(δ−k/λ).

Theorem 6.4 Let {ξni} be a strong mixing triangular array whose mixing coefficients satisfy

∞∑
d=1

dQ−2α(d)γ/(Q+γ) <∞ (6.8)

for some even integer Q ≥ 2 and some γ > 0, and let F be a uniformly bounded class of real-valued
functions whose bracketing numbers satisfy∫ 1

0

x−γ/(2+γ)N(x,F)1/Q dx <∞ (6.9)

for the same Q and γ. Then for each ε > 0 there exists a δ > 0 such that

lim sup
n→∞

∥∥∥ sup
ρ(f−g)<δ

|νnf − νng|
∥∥∥
Q
< ε. (6.10)

Corollary 6.5 (Functional Central Limit Theorem) If the conditions of Theorem 6.4 are sat-
isfied and if (νnf1, . . . , νnfk) has an asymptotic normal distribution for all choices of f1, . . . , fk
from F , then {νnf : f ∈ F} converges in distribution to a Gaussian process indexed by F with
ρ-continuous sample paths.
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Remark 6.6 The conditions of Theorem 6.4 require a balance between the rate of decrease in the
mixing coefficients and the rate of growth in the bracketing numbers. For example, if N(x) = O(x−β)
and α(d) = O(d−A) for some β > 0 and A > 0, then the requirements would be satisfied with Q
equal to the smallest even integer greater than 2β and γ = 2, if A > (Q− 1)(1 +Q/2).





Chapter 7

Empirical Likelihood Methods

7.1 EL

7.2 Local Empirical Likelihood

Let {zi}ni=1 = {(y′i, x′i)′}ni=1 be a random sample on Z = Y×X ⊂ Rdy ×Rdx . Consider random vari-
ables (z̃, x̃) with discrete support Zn ×Xn = {z1, . . . , zn}× {x1, . . . , xn}. Let pji be the conditional
probability P{z̃ = zj |x̃ = xi}. The Nadaraya-Watson kernel weight wji is defined by

wji =
K(

xj−xi

bn
)∑n

j=1K(
xj−xi

bn
)
, (7.1)

which is used to control the likelihood contribution. Here, K is a kernel function and bn is a
bandwidth parameter. The parameter defined in the model is denoted by α0 = (θ0, h0) in a compact
set A = Θ ×H, satisfying

E[g(z, α0)|x] = 0. (7.2)

Under the settings above, the local empirical likelihood at x̃ = xi is written by

max
{pji}n

j=1

n∑
j=1

wji log pji, s.t. pji ≥ 0,

n∑
j=1

pji = 1,

n∑
j=1

pjig(zj , α) = 0 (7.3)

for each α ∈ A.
The local conditional empirical likelihood ratio at x̃ = xi is defined as

lin(α) =

n∑
j=1

wji log p̂ji −
n∑

j=1

wji log p̃ji. (7.4)

Based on the local conditional empirical likelihood ratio, the whole estimating equation is given
by

ln(α) =
1

n

n∑
i=1

1{xi ∈ Xn}lin(α), (7.5)
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for each α ∈ A.

7.3 Penalized Empirical Likelihood

Let J(h) be a penalty function to control some physical plausibility of h for smoothness or consis-
tency. The PEL ratio and PEL estimator are defined by

ln(α)− φnJ(h) = − 1

n

n∑
i=1

1{xi ∈ Xn}
n∑

j=1

wji log(1 + λi(α)
′g(zj , α))− φnJ(h), (7.6)

α̂ = (θ̂, ĥ) = argmax
α∈A

{ln(α)− φnJ(h)}, (7.7)

where λi(α) is the Lagrangian corresponding to α.

Assumption 7.1 (i) {zi}ni=1 is i.i.d.

(ii) Support Xn =
∏dx

d=1[xd + b−γ1
n , xd − b−γ1

n ] for some γ1 ∈ (0, 1).
(iii) The density function of x is finite and bounded away from zero on X and is second-order

differentiable on X .

Denote N (ε,A, ‖·‖s) as the minimum number of radius ε covering balls of A under the norm
‖·‖s. Also, define

A(k1, k2) = {α ∈ A; k1 ≤ ‖α− α0‖∗ ≤ 2k1, J(h) ≤ k2} (7.8)

for k1, k2 ∈ (0,∞).

Assumption 7.2 (i) α0 is the only α ∈ A satisfying E[g(z, α)|x] = 0.
(ii) 0 < φn = o(n−1/2), J(h0) <∞, and J(h) ≥ 0 for all h ∈ H.
(iii) supα∈A(k1,k2)‖α− α0‖s ≤ C(k21 + k2)

γ2 for some C and k1, k2 ∈ (0,∞).

(iv) For U = φ
1/2
n (k21 + k2)

(1+γ2)/2 and L = φn(k
2
1 + k2),

sup
k1≥1,k2≥1

∫ U

L

{logN (u,A(k1, k2), ‖·‖s)}1/2du/L ≤ C1n
1/2 (7.9)

for some constant C1.

Assumption 7.3 (i) Each element of g(z, α) satisfies an envelope condition over α ∈ A with
order m ∈ (8,∞) and is Hölder continuous in α ∈ A.

(ii) Each element of V (x, α) is second-order differentiable on X and the second derivative is uni-
formly bounded on (x, α) ∈ X ×A.

(iii) The smallest eigenvalue of V (x, α) is positive and the largest eigenvalue of V (x, α) is finite
uniformly on (x, α) ∈ X ×A.

Assumption 7.4 (i) K(x) is a bounded and Lipschitz continuous function with bounded support,
and is symmetric around the origin.

(ii) K(x) is an rth order kernel function with r ≥ 2.



51

(iii) As n→ ∞, nb4rn → 0 and

inf
k1≥1,k2≥1

{ n1/2(k21 + k2)
2bdx

n

max{1, n−1/4+1/(2m)(k21 + k2)1−2/mb
−2(dx+1)/m
n }

(7.10)

− log
(N (n−1/4(k21 + k2),A(n−1/8k1, k2), ‖·‖s)

(n−1/4(k21 + k2)b
dx+1
n )dx

)}
→ ∞.

(7.11)

Let V (x, α) = E[g(z, α)g(z, α)′|x] and ‖α− α0‖∗ be a Fisher-type norm for α ∈ A defined as

‖α− α0‖∗ =
√
E[E[g(z, α)|x]′V (x, α)−1E[g(z, α)|x]]. (7.12)

Theorem 7.1 Suppose that Assumtions 7.2-7.4 hold. Then

(i) ‖α̂− α0‖∗ = op(n
−1/4).

(ii) P{J(ĥ) ≥ (1 + δ)max{J(h0), 1}} → 0 for some δ ∈ (0, 1).

Define Dh(l)(x, α0) by

Dh(l)(x, α0) = E
[dg(z, α0)

dθ(l)

∣∣∣x]− E
[dg(z, α0)

dh
[h(l) − h0]

∣∣∣x] (7.13)

and h∗(l) by

h∗(l) = arg min
h(l)∈VarH

E
[
Dh(l)(x, α0)

′V (x, α0)
−1Dh(l)(x, α0)

]
, (7.14)

for l = 1, . . . , dθ with dθ as the dimension of Θ, and H̄ as the closure of the linear span of H. The
shrinking subset Bn is defined by

Bn = {α ∈ A; ‖α− α0‖∗ ≤ cn, J(h) ≤ (1 + δ)max{J(h0), 1}} with cn = o(n−1/4). (7.15)

Assumption 7.5 (i) θ0 is an interior point of Θ ⊂ Rdθ .
(ii) E[D(x, α0)

′V (x, α0)
−1D(x, α0)] is positive definite.

(iii) J(v0h) <∞ and J(h+ εnv0h)− J(h) ≤ Cεγ3
n J(v0h) for some γ3 ∈ [1,∞) and all h ∈ H being

a subvector of α ∈ Bn and εn = o(n−1/2).
(iv) There exist a measurable function c(x) and a constant γ4 ∈ [1/2,∞) such that ‖E[g(z, α)|x]‖ ≤

c(x)‖α− α0‖γ4
∗ for all x ∈ X and α ∈ Bn with c(x) <∞.

(v) α+tv0 ∈ A for all small t ∈ [0, 1] and all α ∈ Bn, g(z, α+tv0) is second-order differentiable a.s.
at t = 0 for all α ∈ Bn, each element of gα[z, v0] satisfies an envelope condition over α ∈ Bn

with order 2 and is H0̈lder continuous in α ∈ Bn, and each element of d2g(z, α+ tv0)/dt
2|t=0

satisfies an envelope condition over α ∈ Bn with order 2.
(vi) E[E[gα0

[z, v0]|x]′V (x, α0)
−1{E[gᾱ[z, α − α0]|x] − E[gα0

[z, α − α0]|x]}] = o(n−1/2) uniformly
on α, ᾱ ∈ Bn, and E[‖E[gα[z, v0]|x]′V (x, α0)

−1 − E[gα0
[z, v0]|x]′V (x, α0)

−1‖2] = o(n−1/2)
uniformly on α ∈ Bn.

Theorem 7.2 Suppose that Assumptions - hold. Then

√
n(θ̂ − θ0) N (0, Σ−1), Σ−1 = E[D(x, α0)

′V (x, α0)
−1D(x, α0)]. (7.16)





Chapter 8

Supplement

Suppose g : Rn → R is absolutely continuous function, then

total variation of g =

∫
‖∇g‖dx. (8.1)

Let Tn = Tn(x1, . . . , xn) be an estimate of the scalar parameter θ in the distribution Pn
θ for

xn = (x1, . . . , xn), and let EFF(Tn, P
n
θ ) denote a suitably defined efficiency of Tn at Pn

θ .

EFF () =
VarCR(P

n
θ )

VarPn
θ
(Tn)

, (8.2)

where VCR is the Cramer-Rao lower bound at Pn
θ .

The measure for the process {xn}n≥1 is denoted P∞
θ , and the efficiency of T at Fθ is

EFF (T, P∞
θ ) =

1

i(P∞
θ )V∞(T )

. (8.3)

where V∞(T ) is the asymptotic variance of
√
nTn at P∞

θ and i(P∞
θ ) = limn→∞ n−1i(Pn

θ ) is the
asymptotic Fisher information for θ, i(Pn

θ ) being the finite sample Fisher information for θ.
A min-max robust estimate T0 solves the problem

inf
T∈T

sup
P∈P∞

V (T, P∞). (8.4)

The solution to this problem is usually obtained by solving the saddle point problem

sup
P∞

inf
T∈

V (T, P∞) = V (T0, P
∞
0 ) = inf

T
sup
P∞

V (T, P∞). (8.5)

θ
C−1(ϕ, θ) (8.6)

µ H
var(F )H2(ϕ, θ) (8.7)
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