
LONG RANGE DEPENDENCE

YAN LIU

1. Reference

Fox and Taqqu (1986), AS.
Giraitis and Taqqu (1999), AS.

2. notations

2.1. Notations.

1. Xj , j ≥ 1 a stationary Gaussian sequence
2. µ mean
3. σ2f(x, θ) spectral density
4. E ⊂ Rp compact
5. X̄N = (1/N)

∑n
j=1Xj

6. Z = (X1 − X̄N , . . . , XN − X̄N )′

7. AN (θ) N ×N matrix with entries [AN (θ)]jk = aj−k(θ) below
8. W (θ) the p× p matrix with j, kth entry wjk(θ)
9. ξ = (ξ0 . . . , ξr)
10. ϕ = (ϕ0, . . . , ϕq)

11. Ġ the derivative of G

3. Fundamental Setting

3.1. Basics.

(i) µ, σ2 > 0 and θ ∈ E are unknown parameters.

(ii) The periodogram IN (x) and ĨN (x)

IN (x) =
|
∑N

j=1 e
ijx(Xj − X̄N )|2

2πN
, ĨN (x) =

|
∑N

j=1 e
ijx(Xj − µ)|2

2πN
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(iii) Estimators θ̄N and σ̄2
N are defined by

(θ̄N , σ̄2
N ) = argmax

θ,σ2

1

σ
exp

{
− 1

2Nσ2
Z ′AN (θ)Z

}
.

Equivalently, θ̄N minimizes

σ2
N (θ) =

Z ′AN (θ)Z

N
=

1

2π

∫ π

−π
[f(x, θ)]−1IN (x)dx.

(iv) aj−k(θ) is defined by

aj(θ) =
1

(2π)2

∫ π

−π
eijxf−1(x, θ)dx.

(v) wjk(θ) is defined by

wjk(θ) =

∫ π

−π
f(x, θ)

∂2

∂θj∂θk
f−1(x, θ)dx.

(vi) Fractional Gaussian noise
It is a stationary Gaussian sequence with mean 0 and covariance

rk = EXjXj+k =
C

2
{|k + 1|2H − 2|k|2H + |k − 1|2H},

where H is a parameter satisfying 1
2 < H < 1 and C > 0. This covariance satisfies

rk ∼ CH(2H − 1)k2H−2 as k → ∞.

The spectral density f(x,H) of fractional Gaussian noise is given by

f(x,H) = CF (H)f0(x,H),

where

f0(x,H) = (1− cosx)
∞∑

k=−∞
|x+ 2kπ|−1−2H , −π ≤ x ≤ π,

and

F (H) =

{∫ ∞

−∞
(1− cosx)|x|−1−2Hdx

}−1

As x → 0 we have

f(x,H) ∼ CF (H)

2
|x|1−2H .

(vii) Fractional ARMA
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• g(x, ξ) =
∑p

j=0 ξjx
j

• h(x, ϕ) =
∑q

j=0 ϕjx
j

• g(x, ξ), h(x, ϕ) have no zeros on the unit circle and no zeros in common.

A Gaussian sequence with mean 0 and spectral density f(x, d, ξ, ϕ) is called a frac-
tional ARMA process, where

f(x, d, ξ, ϕ) = C|eix−1|−2d
∣∣∣ g(eix, ξ)
h(eix, ϕ)

∣∣∣2,
Heuristically, it is the sequence which, when differenced d times, yields an ARMA
process with spectral density

C
∣∣∣ g(eix, ξ)
h(eix, ϕ)

∣∣∣2.
As x → 0

f(x, d, ξ, ϕ) ∼ C
∣∣∣ g(eix, ξ)
h(eix, ϕ)

∣∣∣2|x|−2d.

(viii) If the mean is unknown

IN (x) =
1

2πN

∣∣∣ N∑
j=1

eijx(Xj − X̄N )2
∣∣∣,

while if the mean is known

ĨN (x) =
1

2πN

∣∣∣ N∑
j=1

eijx(Xj − µ)2
∣∣∣.

3.2. Assumptions. There exists 0 < α(θ) < 1 such that for each δ > 0,

(A.1) g(θ) =
∫ π
−π log f(x, θ)dx can be differentiated twice under the integral sign.

(A.2) f(x, θ) is continuous at all (x, θ), x ̸= 0, f−1(x, θ) is continuous at all (x, θ), and

f(x, θ) = O(|x|−α(θ)−δ), as x → 0.

(A.3) ∂/∂θjf
−1(x, θ) and ∂2/∂θj∂θkf

−1(x, θ) are continuous at all (x, θ),

θ

∂θj
f−1(x, θ) = O(|x|−α(θ)−δ) as x → 0, 1 ≤ j ≤ p,

and
∂2

∂θj∂θk
f−1(x, θ) = O(|x|α(θ)−δ) as x → 0, 1 ≤ j, k ≤ p.
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(A.4) ∂/∂xf(x, θ) is continuous at all (x, θ), x ̸= 0, and

∂

∂x
f(x, θ) = O(|x|−α(θ)−1−δ), as x → 0.

(A.5) ∂2/∂x∂θjf
−1(x, θ) is continuous at all (x, θ), x ̸= 0, and

∂2

∂x∂θj
f−1(x, θ) = O(|x|α(θ)−1−δ) as x → 0, 1 ≤ j ≤ p.

(A.6) ∂3/∂x2∂θjf
−1(x, θ) is continuous at all (x, θ), x ̸= 0, and

∂3

∂2x∂θj
f−1(x, θ) = O(|x|α(θ)−2−δ) as x → 0, 1 ≤ j ≤ p.

4. Main Results

Lemma 4.1. If (A.1), (A.2) and (A.3) hold then

wjk(θ) =

∫ π

−π

(
∂

∂θj
f−1(x, θ)

)(
∂

∂θk
f−1(x, θ)

)
f2(x, θ)dx.

Proof. Note that

0 =

∫ π

−π

∂2

∂θj∂θk
log f(x, θ)dx

= −
∫ π

−π

(
∂

∂θj
f−1(x, θ)

)(
∂

∂θk
f−1(x, θ)

)
f2(x, θ)dx+

∫ π

−π
f−1(x, θ)

∂2

∂θj∂θk
f(x, θ)dx.

(4.1) {?}

□
⟨thm1:ft1986⟩

Theorem 4.2 (ft (1986)). If f(x, θ) satisfies conditions (A.2) and (A.4), then with prob-
ability 1,

lim
N→∞

θ̄N = θ0.

lim
N→∞

σ̄2
N = σ2

0.

⟨thm2:ft1986⟩Theorem 4.3 (ft (1986)). If conditions (A.1)-(A.6) are satisfied then the random vector√
N(θ̄N − θ0) tends in distribution to a normal random vector with mean 0 and covariance

matrix 4πW−1(θ0).

Proof. The proof is given by the following 3 steps.
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Step 1. Set mN,j = E ∂/∂θjσ
2
N (θ0) with

YN =

p∑
j=1

cj

[ ∂

∂θj
σ2
N (θ0)−mN,j

]
.

As a result, √
NYN

L−→ N (0, s2).

Step 2. From Lemma 8.1 of Fox and Taqqu (1983),

lim
N→∞

√
N(mN,l − µN,l) = 0.

Step 3. Set

µN,l = E
{ 1

2π

∫ π

−π

∂

∂θl
f−1(x, θ0)ĨN (x)dx

}
.

As a result,

lim
N→∞

√
NµN,l = 0, l = 1, . . . , p.

□
⟨thm3:ft1986⟩

Theorem 4.4. The conclusions of Theorems 4.2 and 4.3 hold if Xj − µ is fractional
Gaussian noise with 1

2 < H < 1 or a fractional ARMA process with 0 < d < 1
2 .

Corollary 4.5. When µ = EXj is known, Theorems 4.2, 4.3 and 4.4 hold if IN (x) is

replaced by ĨN (x).

5. Further Reading

• See Sinai (1976, TPA) for the derivation of the spectral density of long-range de-
pendent process

• See Granger and Joyeux (1980) and Hosking (1981) for the modeling of strongly
dependent phenomena.

• Fox and Taqqu (1983), technical report 590, Cornell Univ.

• Fox and Taqqu (1985), AP
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6. notations

1. Xt, t ∈ Z a strongly dependent time series
2. f(x) the spectral density of the time series
3. L a slowly varying function at infinity
4. α the exponent
5. G a polynomial
6. Yt = G(Xt)
7. sθ(x) = σ2gθ(x) the spectral density of the process Yt
8. LG,θ a slowly varying function
9. (θ, σ2) the parameters
10. AN,θ = {aθ(t− s)}t,s=1,...,N

11. ρ1 = 2
∑

t∈Z[EĠ(Xt)G(X0)]∇aθ0(t)

7. Fundamental Setting

7.1. Basics.

(i) Estimators

θ̂N = argmin
θ

N−1Y ′AN,θY,

where Y = (Y1, . . . , YN ).

(ii) aθ(t) is defined by

aθ(t) =

∫ π

−π
eitsg−1

θ (x)dx.

(iii) vm,n(t− s)

vm,n(t− s) =
1

m!n!
[EGm(Xt)G

(n)(Xs)]∇aθ0(t− s).

(iv) ρk

ρk =
∑

m,n≥0;m+n=k

∑
t∈Z

vm,n(t)

⟨ss:7.2⟩ 7.2. Assumptions.

(i) The spectral density f(x) satisfies

f(x) = |x|−αL(1/|x|), x ∈ [−π, π], (0 < α < 1).

Remark 7.1. Note that α = 1− 2H (1/2 < H < 1).

(ii) gθ satisfies

gθ(x) = |x|−αG(θ)LG,θ(1/|x|), |x| ≤ π,

where 0 ≤ αG(θ) < 1.
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(iii) Suppose ∫ π

−π
log gθ(x)dx = 0, θ ∈ Θ. (7.1) eq2.3:gt1999

(iv) (∂2/∂θi∂θj)g
−1
θ (x) is a continuous function in (x, θ).

(v) For any small fixed number ϵ > 0,∣∣∣ ∂

∂θj
g−1
θ (x)

∣∣∣ ≤ C|x|αG(θ)−ϵ, |x| ≤ π for θ = θ0,∣∣∣ ∂2

∂x∂θj
g−1
θ (x)

∣∣∣ ≤ C|x|αG(θ)−1−ϵ, |x| ≤ π for θ = θ0.

(vi) the spectral density f of the Gaussian sequence (Xt) satisfies∣∣∣ d
dx

f(x)
∣∣∣ ≤ C|x|−α−1ϵ, |x| ≤ π,

where ϵ = ϵ(θ) > 0 is any fixed number.

8. Main Results

Theorem 8.1. Assume that (7.1) holds and that g−1
θ (x) is a continuous function. Then

almost surely,

lim
N→∞

θ̂N = θ0.

lim
N→∞

σ̂2
N = σ2

0.

⟨thm2.2:gt1999⟩Theorem 8.2. Suppose that Assumptions 7.2 hold, that W−1
θ0

exists and ρ1 ̸= 0. Then

θ̂N − θ0 = −(2πσ2
0)

−1W−1
θ0

ρ1

(
N−1

N∑
j=1

Xj

)
(1 + oP (1)).

Corollary 8.3. Theorem 8.2 implies that

[N1−αL−1(N)]1/2(θ̂N − θ0)
L−→ (2πσ2

0)
−1W−1

θ0
ρ1ξ,

where ξ is a Gaussian random variable with zero mean and variance Eξ2 = 2/(α(α+ 1)).

Example 1. In the case of G(Xt) = Xt, Ġ(Xt) = 1 and EĠ(Xt)G(Xt) = EXt = 0 and
therefore ρ1 = 0.

Theorem 8.4. Let ρ1 = 0, ρ2 ̸= 0.
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(i) If 1/2 < α < 1, then

N (1−α)L−1(N)(θ̂N − θ0)
L−→ (2πσ2

0)
−1W−1

θ0
ρ2I2,

where I2 has the Rosenblatt distribution, i.e.,

I2 =

∫
R2

exp(it(x1 + x2))− 1

i(x1 + x2)
|x1|−α|x2|−αZ(dx1)Z(dx2), α > 1/2.

(ii) If 0 < α < 1/2, then
√
N(θ̂N − θ0)

L−→ N (0, (2πσ2
0)

−2W−1
θ0

DW−1
θ0

),

where D is a p× p matrix with entries

d(i, j) =
∑
t∈Z

 ∑
s1,s2∈Z

ȧ
(i)
θ0
(s1)ȧ

(j)
θ0

(s2)Cov(G(Xt)G(Xt+s1), G(X0)G(Xs2))

 .

9. words

1. rather the exception than the rule どちらかといえば例外的で

10. New knowledge

• The compensation effect in the Whittle estimator appears when the observations
Xt are pure Gaussian or linear is rather the exception than the rule!!


