LONG RANGE DEPENDENCE

YAN LIU

1. REFERENCE

Fox and Taqqu (1986), AS.
Giraitis and Taqqu (1999), AS.

2. NOTATIONS

2.1. Notations.

1. X;,j>1 a stationary Gaussian sequence
2. i mean
3. o2f(x,0) spectral density
4. ECR? compact
5. Xy = (1/N) Z;‘ZIX]- )
6. Z =(X;1 — Xn,..., XN — Xn)
7. An(60) N x N matrix with entries [An(0)];x = a;—(6) below
8. W(6) the p x p matrix with j, kth entry w;i(0)
9. ¢ — (€0 &)
10. ¢ = (¢o,...,0q)
11. G the derivative of G
3. FUNDAMENTAL SETTING
3.1. Basics.

(i) u, 02 > 0 and 6 € E are unknown parameters.

(ii) The periodogram Iy (z) and Iy (z)

N — N i
I e - X)) ol 1= e — )l

In(z) 2rN ’
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(iii) Estimators Ay and o2y are defined by

_ 1 1
=2\ _ - _ /
(On, 0% ) = arg 12;13( . exp{ 2]\7022 An(9)Z } .

Equivalently, fy minimizes
Z'An(0)Z 1 (7 _
oil0) = Z2OZ - L [ w00 ()

2 J_,

(iv) a;j—(0) is defined by

a;(0) = (271)2/ e f=(x, 0)dx.

(v) wjk(0) is defined by

82

-1
39j89kf (x,0)dx.

wa®) = [ 1.0

(vi) Fractional Gaussian noise
It is a stationary Gaussian sequence with mean 0 and covariance

C
vk = BX X = k12T = 20k 4 [k - 123,
where H is a parameter satisfying % < H <1 and C' > 0. This covariance satisfies
rp ~ CH(2H — D)E*2 as k — 0.

The spectral density f(z, H) of fractional Gaussian noise is given by

f(JZ,H) - CF(H)fO(va)a

where
folx, H) = (1 — cosx) Z le +2km|7172H, —r <z <,
k=—o00
and .
F(H) = {/ (1-— cosx)\x|_1_2Hd:U}
—00
As x — 0 we have CF(H
fla ) ~ D e,

(vii) Fractional ARMA
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A Gaussian sequence with mean 0 and spectral density f(z,d,&, @) is called a frac-
tional ARMA process, where

2

f(z,d, & ¢) = Clet 72

‘ §)
)
Heuristically, it is the sequence which, when differenced d times, yields an ARMA
process with spectral density

Iie=sl
Asx —0
F(@,d €,6) ~ CM ol

(viii) If the mean is unknown
1 N _
In(z) = W‘dem(Xj - XN)Q‘,
j=
while if the mean is known
. 1 N
In(z) = W‘Z eVt (X — M)Q‘-
j=1

3.2. Assumptions. There exists 0 < a(f) < 1 such that for each § > 0,
(A.1) g(0) = |™ _log f(x,0)dx can be differentiated twice under the integral sign.

(A.2) f(x,0) is continuous at all (z,0), x # 0, f~1(z,0) is continuous at all (z,6), and
f(z,0) = O(|z[~*®%), asz — 0.

(A.3) 0/00;f Y (z,0) and 6?/06,;00xf~1(z,0) are continuous at all (z,6),
O 1(2,0) = 0(al*@%) asz—0, 1<j<p,
00;

and
82

— 1 = a(0)-0 1< i k<np.
89j89kf (7,0) = O(|z| ) asxz—0, 1<jk<p
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(A.4) 9/0xf(x,0) is continuous at all (z,0), x # 0, and

aaf(x,ﬂ) = O(|z|*O=179)  as z — 0.
X

(A.5) 8%/0200,f 1 (x,0) is continuous at all (z,0), z # 0, and
32

0206 FH2,0) = 0(jz]*D7179) asz —0, 1<j<p.

A.6) 03/0x200;f (x,0) is continuous at all (z,6),  # 0, and
J
0?

4. MAIN RESULTS
Lemma 4.1. If (A.1), (A.2) and (A.3) hold then

wik(6) :/_7; <£j —1(95,9)) <£k _l(m,H))f2(x,9)dx.

Proof. Note that

™ 82
0= / log f(z,0)dx

00,00y,
— (@) (s @n) Pends [ 17w0 500 00
)\ 09, ’ 00, ’ ’ ,ﬂ 100,00, )
(4.1) {7}
]
(chni:££1986) Theorem 4.2 (ft (1986)). If f(x,0) satisfies conditions (A.2) and (A.4), then with prob-
ability 1,
lim Oy = 6.
N—o0
N
Jm k= o

(thm2:£t1986) Theorem 4.3 (ft (1986)). If conditions (A.1)-(A.6) are satisfied then the random vector
VN(Oy — 6y) tends in distribution to a normal random vector with mean 0 and covariance
matriz AW ().

Proof. The proof is given by the following 3 steps.
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Step 1. Set my; = E9/90,0%(0y) with
P o
Yv = ; cj [%UN(HO) — mN;|-
As a result,

\/NYN £> N(O, 82).

Step 2. From Lemma 8.1 of Fox and Taqqu (1983),
lim VN (my, — png) = 0.

N—o00
Step 3. Set
1 (™o, )
BN = E{g . 879[]0 (.Z‘,Qo)IN(JC)daj}.
As a result,

lim VNuy; =0, [=1,...,p.
N—o00
O

(thn3:£61986) P oorem 4.4. The conclusions of Theorems 4.2 and 4.3 hold if X; — p s fractional

Gaussian noise with % < H <1 or a fractional ARMA process with 0 < d < %
Corollary 4.5. When p = EXj is known, Theorems 4.2, 4.3 and 4.4 hold if Iy(z) is
replaced by Iy(x).

5. FURTHER READING

See Sinai (1976, TPA) for the derivation of the spectral density of long-range de-
pendent process

See Granger and Joyeux (1980) and Hosking (1981) for the modeling of strongly
dependent phenomena.

Fox and Taqqu (1983), technical report 590, Cornell Univ.

Fox and Taqqu (1985), AP
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6. NOTATIONS

1. Xy, teZ a strongly dependent time series

2. f(=x) the spectral density of the time series
3. L a slowly varying function at infinity
4. « the exponent

5 G a polynomial

6. Yy = G(Xy)

7. sp(x) = 02ge(x) the spectral density of the process Y;
8. Lay a slowly varying function

9. (0,02) the parameters

10. Ang = {ap(t — 5)}t,s:1,...,N

11. p;y =2 12 [EG(Xy)G(X0)|Vag,(t)

7. FUNDAMENTAL SETTING
7.1. Basics.
(i) Estimators
O = arg Hbin N_1Y/AN79Y,
where Y = (Y1,...,Yn).
(ii) ag(t) is defined by
ap(t) :/ e gy (v)d.

(i) v (t — s)

mn(t — 8) = ——[EG™(X,)G™ (X,)|Vag, (t — s).

m!n!

Pr = Z Z Um,n(t)

m,n>0; m+n=~k teZ

(iv) pr

(ss:7.2) 7.2, Assumptions.
(i) The spectral density f(z) satisfies

f(x) =|2z|“L(1/|z|), =e[-mn], (0<a<l).
Remark 7.1. Note that a =1—2H (1/2 < H < 1).

(ii) gp satisfies
go(@) = 2| =D L p(1/[2]), |a| <,
where 0 < ag(0) < 1.
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(iii) Suppose
-7

(iv) (9%/06;00,)g, ' (z) is a continuous function in (z,6).

(v) For any small fixed number € > 0,

ige‘l(w)\ < Clz|*e®@¢, Jz[ <7 for § = b,
06,

2 o1

axaejg‘)l(‘”)‘ < Claf*¢@™7¢ Ju[ <7 for 6 = fo.

(vi) the spectral density f of the Gaussian sequence (X;) satisfies
d
| f@)| < Clal™7", <,
where € = €(f) > 0 is any fixed number.

8. MAIN RESULTS

Theorem 8.1. Assume that (7.1) holds and that g, () is a continuous function. Then
almost surely,

lim Oy = 6.
N—o0

lim 6% = o2
N—oo N 0

(thm2.2:gt1999) Theorem 8.2. Suppose that Assumptions 7.2 hold, that Wegl exists and p1 # 0. Then
N
O — 00 = —(2703) "Wy or (N—1 ZXj) (1+ op(1)).
j=1

Corollary 8.3. Theorem 8.2 implies that
INY=L7N (N2 (b — 60) 5 (2m03) " Wyl pt,
where ¢ is a Gaussian random variable with zero mean and variance F¢? = 2/(a(a + 1)).

Example 1. In the case of G(X;) = X, G(Xt) =1 and EG(Xt)G(Xt) = EX; =0 and
therefore p; = 0.

Theorem 8.4. Let p1 =0, pa # 0.

/ log go(x)dz =0, € O. (7.1)[eq2.3:gt1988]
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(1) If 1/2 < a < 1, then

N(l_a)L_l(N)(éN — 90) £> (2WU§)_1W9;1PZI27

where Iy has the Rosenblatt distribution, i.e.,

exp(it(x; + x2)) — 1 ol a
2= Z(dz1)Z(d 1/2.
? /R? ’i(lil + 332) |$1‘ |:112‘ ( 1’1) ( x2)7 a > /

(11) If 0 < o < 1/2, then
VN (b — 60) 5 N(0, (2r03) 2 W, DW, Y,
where D is a p X p matrix with entries
di, ) =Y | 3 ay) (s1)ag) (s2)Cov(G(X1)G(Xess,), G(X0)G(Xsy))
teEZ | s1,82€7Z

9. WORDS
1. rather the exception than therule OOOO0OOOOOOODOO

10. NEW KNOWLEDGE

e The compensation effect in the Whittle estimator appears when the observations
X; are pure Gaussian or linear is rather the exception than the rule!!



