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Chapter 1

Stable Random Variables

Before introducing the stable random variables, we have to understand the scope where
the stable random variables dominate. The crucial concept here is ”in the domain of
attraction”.

1.1 Domain of Attraction
€ is in the domain of attraction of a stable law with a parameter o and write € € D(«) if
Ple>z)=cz *L(z)(1+ a1(x)), z>0,¢0 >0, (1.1.1)

and
P(e < —z) = coz” *L(z)(1 + a2(x)), x>0,c2 >0, (1.1.2)

with 0 < a < 2, L(z) a slowly varying function at co and «o;(z) — 0 as |z| — oco. If
L(x) =1, then € is in the normal domain of attraction of a stable law with parameter .

Another form for the random variables in the domain of attraction with distribution
function F' satisfies

(1.1.3)

2*P(e >z) =2%(1 — F(x)) - pC, x>0,
x*Ple < —z) = 2*F(—z) — qC, x>0,

which means

{Cl =pC, (1.1.4)
co = qC.

1.2 Parametrization of stable distributions
Let Y be distributed as stable distribution S, (o, 8, 1), then its characteristic function is

Bty = { P01 — iBignt) tan 5 + it} a1, (12.)
exp{—olt|(1 + 2 (signt) log|t|) + iut},
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where o is the scale parameter, 5 is the skewness parameter and p is the location
parameter.
Stable random variables has an exact form of their tails, that is,

x*Ple>x) = #U“Ca, x>0, (12.2)
xPle < —x) = %UQCQ, x> 0. o
Here C, is a constant depending on «, and
%7 if 1,
e, = { s 7 129
Since0<a<2andI'2—a)=(1-a)(1 - a),
__ l-a __ f 1
Ca = {5(2_1?)503“({/2)’ . (1.2.4)
is used in some books.
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1.5 Point Process

1.5.1 Notations 1

Let Fs be the collection of step functions on R — {0} with bounded support.

1.5.2 Conditions
On sequence

(al) {Xk} is an i.i.d sequence of random variables.

(a2) {Xj} is a strictly stationary sequence of random variables.

On random variables
The conditions (bl) on random variables are:

P(| Xy >x) =2 *L(x)
with @ € (0,2) and L(x) a slowly varying function at oo;

P(Xk > .73) P(Xk < —l‘)

- 5y, =
P(Xs > 2) P P(Xu > )

asxr —00,0<p<landg=1-—p.

On technical conditions

(cl) Let a, be defined as

an = inf{z: P(|X1| >z) <n '}

(d1) The mixing condition is defined as

Eexp | =Y f(Xj/an) | = [ Eexp | = f(X;/an)
j=1 j=1

as n — oo for all f € Fs.

1.5.3 Explanation

[”/ 7’n]

—0

(1.5.1)

(1.5.2)

(1.5.3)

(1.5.4)

e (al) and (bl) are necessary and sufficient for the existence of normalizing constants
ap, by for which (S, — b,)/a, converges weakly to some stable law with index «

(cf. Feller (1971)). They also imply that
P(Sy, > ty)

lm ————~ =1

n—oo nP(X1 > ty,)

for any constants t,, satisfying nP(X; > t,) — 0.

(1.5.5)



e (al), (bl) and (cl) imply that
nP(|X1] > apzx) - 2= forall z > 0. (1.5.6)
Or we can write it more implicitly,
nP(X1/a, € -) =y p(-), (1.5.7)
where p is the measure
u(dr) = MNdzx) = apx_o‘_ll(()m) (z)dx + aq(—x)_o‘_ll(_oqo)(x)d:c, (1.5.8)

and —, denotes vague convergence on R — {0}.

1.5.4 Notations 2

Define the point process

No = 6, /a0 (1.5.9)
j=1

where J, represents unit point measure at the point z.
For any y > 0, define

My ={peM: pu(-y,y|°) >0 and p([—z,z]) = 0 for some 0 < z(= x,) < co}.
(1.5.10)
For p € My, let py = max(0,largest point of ), p— = min(0,smallest point of )
and x, = max(j,p—). Define a mapping on My by

Q:p—= (2, pw(zy)). (1.5.11)

The mapping Q is continuous with range (0, 00) x M, where M~: {peM:u([-1,1°) =

0, u({—1} U {1}) > 0}. Denote by B(M) the Borel o-field of M.
7= Mp s p([—1,1]°) > 0} € (0,1

o0
Xn =Y ¢iZn ;. (1.5.12)
7=0
an = inf{z: P(|ZoZy| > z) <n"'}. (1.5.13)
o0
Z]cj\‘s < oo forsome 0 <a,d<l1. (1.5.14)
j=0

o0
Z le;°]5] < oo with

j==o0

=1, ifa>1
{5 e (1.5.15)

O<d<a fa<l.



o(h)=——=, h>0 1.5.16
o0 =G 10 (1.5.16)
where .
h) =Y X Xein. (1.5.17)
Further,
> CiCith

1.5.5 Theorems

Theorem 1.5.1 (DH1995:2.3 [?]). Assume that the condition (d1) holds for {X;}, and
Ny —q some N # o. Then N is infinitely divisible with canonical measure A satisfying
AMM§) =0 and Ao Q™! = v x O, where O is a probability measure on (M,B(M)), and

v(dy) = vyay~* g 00)(y) dy. (1.5.18)

In this case the Laplace transform of N is

exp{ [” [ a-ewuiwmon >v<dy>}, feF (1.5.19)

Theorem 1.5.2 (DH1995:2.5 [?]). Under the condition (d1) for {X;}, the following are
equivalent:

(i) N, converges in distribution to some N # o.

(ii) For some finite positive constant v, kn P[V™" || Xy| > apx] = y2=, > 0, and for
some probability measure O on M, P[30" dx, jvmx,p) € VI [ Xkl] > ana] =
O, x> 0.

In this case N 1is infinitely divisible with canonical measure A confined to My and satis-
fying

Ao Ql=vx0, (1.5.20)
where v(dy) = yay= 1 dy.

Theorem 1.5.3 (DH1995:2.6 [?]). Suppose that N, —4 N and N has the representation
gwen by Theorem 1.5.1. Then v .2, E|Q;|* < 1, where Y .2, dg, ~ O. The equality
holds if {Np(|—1,1]¢)}>2,} is uniformly integrable.

Theorem 1.5.4 (DH1995:2.7 [?]). Suppose that {X;} is a stationary sequence of random
variables for which all finite-dimensional distributions are jointly regqularly varying with
index o > 0. To be specific, let 0™ = (Hgm), |i| < m) be the ransom vector 8 that appears



in the definition of joint regular variation of X;, |i| < m. Assume that the condition
(d1) holds for {X;} and that

lim limsup P \/ |Xi| > tan||Xo| > tan, | =0, t>0, (1.5.21)
m—=00 n—oo
m<|i|<ry
where a, 1s defined above. Then the limit

E(5™M | — v, 6™
I (S 1 i T

m—o0 E|9(()m) |a

(1.5.22)

exists. If v =0 then Ny —q4 o; if ¥ > 0, then N, converges in distribution to some N,
where, using the representation A\ o Q! = v x O described in Theorem 1.5.1, v(dy) =
yoy~* Y dy and O is the weak limit of

B8 Vil L (Sn )
i 20T e _um g (1.5.23)
(185™ 1 = Vi 16512«

as m — oo, which exists.

Theorem 1.5.5 (DH1995:3.1 [?]). Let {X;} be a strictly stationary sequence satisfying
(c1) and

Theorem 1.5.6 (1986:3.3 [4]). Let { Z; } be iid satisfying (1.5.1) and (1.5.2) with 0 <
a <2 and E|Z1|* = co. Then, if an, and a, are given by (1.5.3) and (1.5.13),

n

n
a,” ZZtQ, i Y (ZiZup1 = pin)s @7 "> (ZeZirn — 1)) = (S0, 51,5 Sn),
t=1 t=1
(1.5.24)

where i, = EZ1221(|7,2,<a,] and So, S1, ..., Sk are independent stable random vari-
ables; Sy is positive with index o/2 and Si,S3,...,Sy are identically distributed with
inder o.

Theorem 1.5.7. Suppose Xy = 322 | ¢;Z—; where {c;} satisfies (1.5.15) and {Z}
satisfies (1.5.1) and (1.5.2), and E|Z1|* = 00, 0 < a < 2. If ay, and ay are given by
(1.5.3) and (1.5.13), then for any positive integer I,

(an a2 (p(h) — p(h) — dpn/C(0),1 <h <1) = (Y1,Ya,...,Y)) (1.5.25)

in R, where

(o)

dnn = Y (plh+])+ plh = 5) = 2p(h)p(h) Y &G EZ1Z511 17, 7)< )
Jj=1 i
Vi = > (p(h+3)+ p(h—5) = 2p(j)p(h)S;/So0),
j=1
and Sy, S1, 59, ... are independent stable random variables as described in Theorem 3.5.

In addition, if either



1. 0<a<, or
2. a =1 and the distribution of Z; is symmetric, or
3. 1<a<2and EZ; =0,
then (1.5.25) holds with dy, =0, h=1,...,l, and a location change in the S;’s, j > 1.
Theorem 1.5.8 (1985:4.2 [3]). Let Y 2 €j, be a PRM(X\) on R\{0} with
Adz) = apm_a_ll(om) (x)dx + aq(—m)_o‘_ll(_oo,o) (x)dz, 0<a<2. (1.5.26)

Suppose (1.5.1) - (1.5.12), (1.5.6), (1.5.14) hold with 0 < « < 2. Then for every non-
negative integer l, as n — oco:

1.
(n/ap)(7(0),3(1), -+ A(W) = DGO ) ejeirn Y eieiw)  (15.27)
i=1  j=0  j=0 j=0
and
2. soo
0 CiCj
p(l) — p(l) = =0T, probability. (1.5.28)

Z;io C?
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