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2. NOTATIONS

1. K an rth-order kernel function

2. M the block length

3. L the gap between the beginnings of two adjacent blocks
4. r some integer r > 2

5. 0,=F"1(q) the gth quantile

6. f=F the first derivative of F'

7. G and G, proper distribution functions (Gp(z) = G(z/h))

8. h bandwidth

9. ¢ satisfying P(x? < ¢) = a.

10. 4, — B[G{(0 ~ Xi)/h} — q)

11. 6, the usual estimate of 6,

12. fi; =n" 1300 [G{(0 — Xi)/h} — q)

13. B =1/6(3u5 *1a — 25" 13) )

14. ~ either 5 or g

15. d(c,7) = c¢(1 +n~1y) for the Bartlett-corrected confidence region I}, g g

3. CONCEPTS AND DEFINITIONS

3.1. rth-order kernel function. for some integer » > 2 and constant x # 0, K is a
function satisfying

1, ifj=0,
(3.1)[eqch:3.1] /qu(u)dU— 0, if1<j<r—1,
Kk, ifj=r.
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3.2. Empirical log likelihood. Some functions are

Fpn(0) =Y piGa(0 — Xi),

1=1

and
n

Lp() = sup H(npl)
PFpn(0)=q =1
ELL is defined by

In(0) = —2log Ly ().
3.2.1. Blockwise empirical likelihood.

(1) some functions
9n(Xi, 0q) = Gp(0g — Xi) — q

(2) the i-th block average
M

T(6q) = M Zgh(X(zel)Lﬂ'a@q)

(3) The block empirical likelihood for 6,

Q
Lh(eq) = sup le)
=1

subject to
Q Q
d pi=1, > piTi(8,) =0.
i=1 i=1

4. ASSUMPTIONS

4.1. Assumption A.
(A1) K satisfies (3.1) and is bounded and compactly supported.

(A2) f and f"~Y exist in a neighborhood of 6, and are continuous at 6,.
(A3) f(0q) > 0.

(A4) for some t > 0, nh® — 0.

4.2. Assumption A’. In addition to Assumption A,

nh®* — 0 and nh/logn — oco.
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4.3. Assumption C.

(C1) {X;}!, is a strictly stationary a-mixing sequence.

(C2) S22, kal/P(k) < oo for some p > 1.

(C3) the spectral density ¢(t) of {1{X} < 6,}}_, satisfies $(0) > 0.
(C4) (A1)

(C5) nh* — 0 and nh — oc.

(C6) (A2) and (A3).

(C7) The block length M — oo and M = o(n'/?). The gap L satisfies kL < M and
(k+1)L > M for some k > 0.

5. FORMULAE

For the solution A of the equation

Zwi(l—i-)\wi)_l = 0.
i=1

> Awi(1+dw) ™ = 0.

i=1
i 1+ /\’U)Z' -
1+
1=1
Y =
=1
Note that
w; )\fwi2 (1 + dw;)w;
1+)\wi_1+)\wi 1+ dw; ’
also

n

2
St e -

i=1

6. RESuULTS

Theorem 6.1. Suppose Assumption A. If nh?" — 0, then

L
In(0,) = x3.
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Proof. Step 1. Define w; = w;(6;) = G(0, — X;) — ¢ with the solution A = \(6,) of the
equation

Zwi(l + )\’wi)il =0.
=1

Note that p; = n~ (1 4+ Aw;)~! > 0, we have
11+ Aw; |71 > (1 + |A| max|w;]) L.

Theorem 6.2. Suppose Assumption A’. If nh" is bounded, then
P(0, € Ine) = a+O(n™1).
The right-hand side cannot be rendered equal to a + o(n™1') by appropriately choosing h.
Theorem 6.3. If n3h?" is bounded, for either v = 3 or vy = B,
P(0q € Ijgicy)) = @+ O(n™?).
Suppose By = 1/6¢7 (1 — q)~1(1 — g+ ¢?). Since 8= By + O(h),
P(0, € Ih,d(c,ﬂo)) =a+ O(n_lh).

7. INTRODUCTION
(1) If F, 5 Fp, then

T(F,) 5 T(F) !

8. SETTING

(1) The empirical distribution

1
Fn:nz;é)(i;
1=

(2) The common distribution function Fp;
(3) The likelihood function

L(F) = [[F{z:} under F;
i=1
(4) The empirical likelihood ratio function
R(F) = L(F)/L(Fy);
(5) Confidence Region C for T'(Fp)
C={T(F)|R(F)>r}.



EMPIRICAL LIKELIHOOD RATIO 5

9. RESULTS

Theorem 9.1. Let X, X1, ...be i.i.d. random vectors in RP, with E(X) = po and
V(X) = X of rank ¢ > 0. For positive r < 1, let Cy,, = {[ X dF|F < F,,R(F) > r}.
Then C,.p, is a convex set and

(owen1990: thm1)

nh—>nolo P(NO S Cr,n) = P(X%q) < —210g ’f’).
Moreover if E\X\4 < 00, then
|P(p € Crn) — P(X%q) < —2logr)| = O(n~?).

Theorem 9.2 (Empirical likelihood for triangular arrays). Let Z;, € RP for 1 <i <n and
p < n < oo, be a collection of random vectors, with Ziy, . .., Zn, independent for each n.
Suppose that E(Ziy,) = my, V(Zin) = Vi, and let Vi, = (1/n) Y1 Vin, 01, = maxeig(V,)
and opy, = mineig(V;,). Assume that as n — oo,

(9.1) [owens1:eq3.3a] P(my € ch({Zin,- .., Zun})) = 1

and

n
(0.2)overdtiactsn]  n 72y E( oy = ml'o72) =0

i=1
and that for some ¢ > 0 and all n > p,

(9.3)[ovenst ioq8 3¢ o/ 2 .

Then —2log R(my,) — X%p) in distribution as n — oo, where

R(m) = sup{H nw;|w; > 0, Zwi =1, ZwiZm =m}.
Remark 9.3. The error in Theorem 9.1 is shown to be

e O(n™1) if the assumptions justifying Edgeworth expansions are met;
e O(n~2) if there is a Bartlett factor;
e O(n~'/2) still obtains for one sided problems.

10. SOME LEMMAS

10.1. Setting.
(1) Let w = (wy,...,w,) be defined as
(10.1) [owent90:eq2 1] wiz0 ), w=FX)
]X]:Xl

for 1 <i,j5 <n.
(2) Define
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10.2. Lemmas.
Lemma 10.1. For any r € [0,1],
{F|R(F)>r} = {F|R(F,w) somew satisfying (10.1)}

Lemma 10.2. Let Fy be a distribution on RP with mean pg and finite covariance matrizc
> of full rank p. Let Q be the set of unit vectors in RP. Then for X ~ Fy,

inf P((X — po)'0 .
inf P((X ~ p0)'9>0)>0

Sketch of proof.

(1) Suppose pg = 0;
(2) By compactness of €2, we have 0} — 0y € Q;

11. REGRESSION MODEL
In the regression model, the data are of the form (z;,y;) for 1 <i < n.
Yi =60 + €,
where By € RP is a column vector of coefficients and ¢; is a random variable with mean 0
and variance o2(x;) < oo.
On the condition (9.1)
Let P = {z;|Y; — z;80 > 0} and N = {a;]Y; — ;60 < 0}. If
(11.1)[owen91:eq5. 1] ch(N) Nch(P) # 0,
then 0 is in the convex hull of the Z,.

Proof. Using contraposition. ]

On the condition (9.2)
Introduce

a(z) = / (¥ — p(x)) dF,.

If mineig(V;,) > a > 0 for all sufficiently large n, a sufficient condition for (9.2) is

n
(11.2) owens1  eq5.2| ) llaill i) = 0.
=1

On the condition (9.3)
Note that

1
V= - Za;;:ciUZ(xi).

(9.3) follows if (1/n) > |lz;||*t? < oo and both mineig(1/n)X’X and o?(x;) are bounded
away from 0.
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Corollary 11.1. Let ng > p, @ > 0 and a,b > 0. Assume that (11.2) holds and as n — oo,
(11.1) holds with probability tending to 1. Suppose a < o2(x;) < b||z;]|* for all i and that
for all n > ng, a < mineig(X’X)/n and (1/n) Y ||2;||*"2 < b. Then

—2log R(5p) —4 X%p) as n — oo.

12. LINEAR ALGEBRA
12.1. Variance. Suppose that Z; = Z;(8) = «}(Y; — x;), where x; now the x; are not
random. If 5 = By in the regression model, then
V(Z;) = V(zhe;) = E(zhe (zhe)) = 2l E(e€)x; = xhwio? ().
13. SIMPLEX

A k-simplex is a k-dimensional polytope which is the convex hull of its k 4+ 1 vertices.

Suppose the k + 1 points ug, ..., ux € R™ are affinely independent, which means u; — ug,

.., ug — ug are linearly dependent. Then the simplex determined by them is the set of
points

k
C = {Oouo + -+ + Opup0; > 0,0 < i <k, > 0; =1},
Note that i =
Bouo + -+ + Opup = uo + Zei(ui — ),
and u; — ug, ..., up — ug are linearly dependent. l:VVle can see that ug causes ”affine” and

other points cause the figure.

TABLE 2. Simplex

0-simplex | a single point
1-simplex a line
2-simplex triangle
3-simplex | tetrahedron
4-simplex 5-cell

13.1. face. The convex hull of any nonempty subset of the n 4+ 1 points that define an
n-simplex is called a face of the simplex. In particular, the convex hull of a subset of size
m + 1 is an m-simplex, called an m-face of the n-simplex.

Remark 13.1. The number of m-faces is equal to the binomial coefficient (::;11)
Example 1.

The vertices of tetrahedron are 4Ci = 4;

The edges of tetrahedron are 4Co = 6;

The faces of tetrahedron are 4C35 = 4.
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14. APPLICATIONS

EL method is applied to the problem of setting a confidence interval of

1) means,

2) regression models,

3) generalized linear models,

4) estimating equations,

5) space curves estimated by kernel smooths.

(
(
(
(
(

Furthermore, they can be applied to
(6) quantiles

15. ADVANTAGES
15.1. ELR. The vantages are that

e it does not require us to specify a family of distributions for the data;
(cf. bootstrap, jackknife.)

e it makes an automatic determination of the shape of confidence regions;
(cf. parametric likelihood methods.)

e it enables the shape of a region

Empirical likelihood can be thought of as a bootstrap that does not resample, and as a
likelihood without parametric assumptions.

15.2. smoothed ELR.

e it is not necessary to accurately determine an “optimal” value of the parameter.
e it is Bartlett-correctable.

TABLE 3. Comparison of ELR and simple confidence interval

ELR Order | A.B.C. order CI Order | normal-approx
regular case | O(n™1) O(n7?)
quantile | O(n=1/2) (two-sided) sign-test CI | O(n=1/?) O(n=1)
(or binomial-method)
smoothed | O(n™1) O(n7?) Interpolation method | O(n™1!) not B.C.

?(default)?

16. FOUNDATIONS

16.1. General version of Wilks’ theorem for quantiles. The error in the chi-squared
approximation is given by
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TABLE 4. with smoothing parameter

error A .B.C. order
O(n~1) O(n=?)
simple B.C. case o(n=T)

16.2. Questions.
(1) Ka.Plan-Meier estimator ?
(2) bootstrap ?
(3) Vapnik-Cervonenkis theory ? (exponentially fast ?)

16.3. Summary.
ELTs (empirical likelihood theorems ) # Wilk’s theorem !!

EL method combines the reliability of the nonparametric method with the flexibility
and effectiveness of the likelihood approach.

The empirical likelihood is distinguished more by being a likelihood than by being em-
pirical.

16.4. On the parametric method. The vantages of the parametric method are that

(1) the effective estimators can be found;
(2) tests with good power properties can be constructed;
(3) its flexibility.
However, a problem with parametric inferences is that we might not know which para-
metric family to use and then

e the inefficiency is caused by such misspecification;
e the corresponding confidence intervals and tests can fail completely.
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