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2. Notations

1. K an rth-order kernel function
2. M the block length
3. L the gap between the beginnings of two adjacent blocks
4. r some integer r ≥ 2
5. θq = F−1(q) the qth quantile
6. f = F ′ the first derivative of F
7. G and Gh proper distribution functions (Gh(x) = G(x/h))
8. h bandwidth
9. c satisfying P (χ2

1 ≤ c) = α.
10. µj = E[G{(θq −Xi)/h} − q]j

11. θ̂q the usual estimate of θq
12. µ̂j = n−1

∑n
i=1[G{(θ̂q −Xi)/h} − q]j

13. β = 1/6(3µ−2
2 µ4 − 2µ−3

2 µ2
3)

14. γ either β or β̂
15. d(c, γ) = c(1 + n−1γ) for the Bartlett-corrected confidence region Ih,d(c,β)

3. Concepts and definitions

3.1. rth-order kernel function. for some integer r ≥ 2 and constant κ ̸= 0, K is a
function satisfying

(3.1) eqch:3.1

∫
ujK(u)du =


1, if j = 0,

0, if 1 ≤ j ≤ r − 1,

κ, if j = r.
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3.2. Empirical log likelihood. Some functions are

F̂p,h(θ) =

n∑
i=1

piGh(θ −Xi),

and

Lh(θ) = sup
p:F̂p,h(θ)=q

n∏
i=1

(npi).

ELL is defined by
lh(θ) = −2 logLh(θ).

3.2.1. Blockwise empirical likelihood.

(1) some functions
gh(Xi, θq) = Gh(θq −Xi)− q

(2) the i-th block average

Ti(θq) =
1

M

M∑
j=1

gh(X(i−1)L+j , θq)

(3) The block empirical likelihood for θq

Lh(θq) = sup

Q∏
i=1

pi,

subject to
Q∑
i=1

pi = 1,

Q∑
i=1

piTi(θq) = 0.

4. Assumptions

4.1. Assumption A.

(A1) K satisfies (3.1) and is bounded and compactly supported.

(A2) f and f (r−1) exist in a neighborhood of θq and are continuous at θq.

(A3) f(θq) > 0.

(A4) for some t > 0, nht → 0.

4.2. Assumption A’. In addition to Assumption A,

nh2r → 0 and nh/ log n → ∞.
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4.3. Assumption C.

(C1) {Xi}ni=1 is a strictly stationary α-mixing sequence.

(C2)
∑∞

k=1 kα
1/p(k) < ∞ for some p > 1.

(C3) the spectral density ϕ(t) of {1{Xk < θq}nk=1 satisfies ϕ(0) > 0.

(C4) (A1)

(C5) nh2r → 0 and nh → ∞.

(C6) (A2) and (A3).

(C7) The block length M → ∞ and M = o(n1/2). The gap L satisfies kL ≤ M and
(k + 1)L > M for some k > 0.

5. Formulae

For the solution λ of the equation

n∑
i=1

wi(1 + λwi)
−1 = 0.

n∑
i=1

λwi(1 + λwi)
−1 = 0.

n∑
i=1

1 + λwi

1 + λwi
= n.

n∑
i=1

1

1 + λwi
= n.

Note that

− wi

1 + λwi
=

λw2
i

1 + λwi
− (1 + λwi)wi

1 + λwi
,

also
n∑

i=1

{ λw2
i

1 + λwi
− wi

}
= 0.

6. Results

Theorem 6.1. Suppose Assumption A. If nh2r → 0, then

lh(θq)
L−→ χ2

1.
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Proof. Step 1. Define wi = wi(θq) = Gh(θq −Xi) − q with the solution λ = λ(θq) of the
equation

n∑
i=1

wi(1 + λwi)
−1 = 0.

Note that pi = n−1(1 + λwi)
−1 ≥ 0, we have

|1 + λwi|−1 ≥ (1 + |λ|max|wi|)−1.

□

Theorem 6.2. Suppose Assumption A’. If nhr is bounded, then

P (θq ∈ Ihc) = α+O(n−1).

The right-hand side cannot be rendered equal to α+ o(n−1) by appropriately choosing h.

Theorem 6.3. If n3h2r is bounded, for either γ = β or γ = β̂,

P (θq ∈ Ih,d(c,γ)) = α+O(n−2).

Suppose β0 = 1/6q−1(1− q)−1(1− q + q2). Since β = β0 +O(h),

P (θq ∈ Ih,d(c,β0)) = α+O(n−1h).

7. Introduction

(1) If Fn
L−→ F0, then

T (Fn)
L−→ T (F0) !

8. Setting

(1) The empirical distribution

Fn =
1

n

n∑
i=1

δXi ;

(2) The common distribution function F0;
(3) The likelihood function

L(F ) =

n∏
i=1

F{xi} under F ;

(4) The empirical likelihood ratio function

R(F ) = L(F )/L(Fn);

(5) Confidence Region C for T (F0)

C = {T (F )|R(F ) ≥ r}.
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9. Results
⟨owen1990:thm1⟩

Theorem 9.1. Let X, X1, . . . be i.i.d. random vectors in Rp, with E(X) = µ0 and
V (X) = Σ of rank q > 0. For positive r < 1, let Cr,n = {

∫
X dF |F ≪ Fn, R(F ) ≥ r}.

Then Cr,n is a convex set and

lim
n→∞

P (µ0 ∈ Cr,n) = P (χ2
(q) ≤ −2 log r).

Moreover if E|X|4 < ∞, then

|P (µ ∈ Cr,n)− P (χ2
(q) ≤ −2 log r)| = O(n−1/2).

Theorem 9.2 (Empirical likelihood for triangular arrays). Let Zin ∈ Rp for 1 ≤ i ≤ n and
p ≤ n < ∞, be a collection of random vectors, with Z1n, . . . , Znn independent for each n.
Suppose that E(Zin) = mn, V (Zin) = Vin and let Vn = (1/n)

∑n
i=1 Vin, σ1n = max eig(Vn)

and σpn = min eig(Vn). Assume that as n → ∞,

(9.1) owen91:eq3.3a P (mn ∈ ch({Z1n, . . . , Znn})) → 1

and

(9.2) owen91:eq3.3b n−2
n∑

i=1

E(∥Zin −mn∥4σ−2
1n ) → 0

and that for some c > 0 and all n ≥ p,

(9.3) owen91:eq3.3c σpn/σ1n ≥ c.

Then −2 logR(mn) → χ2
(p) in distribution as n → ∞, where

R(m) = sup{
∏

nωi|ωi ≥ 0,
∑

ωi = 1,
∑

ωiZin = m}.

Remark 9.3. The error in Theorem 9.1 is shown to be

• O(n−1) if the assumptions justifying Edgeworth expansions are met;
• O(n−2) if there is a Bartlett factor;

• O(n−1/2) still obtains for one sided problems.

10. Some lemmas

10.1. Setting.

(1) Let w = (w1, . . . , wn) be defined as

(10.1) owen1990:eq2.1 wi ≥ 0,
∑

j:Xj=Xi

wj = F (Xi)

for 1 ≤ i, j ≤ n.
(2) Define

R̃(F,w) =

n∏
i=1

nwi.
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10.2. Lemmas.

Lemma 10.1. For any r ∈ [0, 1],

{F |R(F ) ≥ r} = {F |R̃(F,w) some w satisfying (10.1)}

Lemma 10.2. Let F0 be a distribution on Rp with mean µ0 and finite covariance matrix
Σ of full rank p. Let Ω be the set of unit vectors in Rp. Then for X ∼ F0,

inf
θ∈Ω

P ((X − µ0)
′θ > 0) > 0.

Sketch of proof.

(1) Suppose µ0 = 0;
(2) By compactness of Ω, we have θ∗n → θ0 ∈ Ω;

□

11. Regression model

In the regression model, the data are of the form (xi, yi) for 1 ≤ i ≤ n.

Yi = xiβ0 + ϵi,

where β0 ∈ Rp is a column vector of coefficients and ϵi is a random variable with mean 0
and variance σ2(xi) < ∞.

On the condition (9.1)
Let P = {xi|Yi − xiβ0 > 0} and N = {xi|Yi − xiβ0 < 0}. If

(11.1) owen91:eq5.1 ch(N) ∩ ch(P ) ̸= ∅,

then 0 is in the convex hull of the Zin.

Proof. Using contraposition. □

On the condition (9.2)
Introduce

µ4(x) =

∫
(Y − µ(x))4 dFx.

If min eig(Vn) > a > 0 for all sufficiently large n, a sufficient condition for (9.2) is

(11.2) owen91:eq5.2 n−2
n∑

i=1

∥xi∥4µ4(xi) → 0.

On the condition (9.3)
Note that

Vn =
1

n

∑
x′ixiσ

2(xi).

(9.3) follows if (1/n)
∑

∥xi∥α+2 < ∞ and both min eig(1/n)X ′X and σ2(xi) are bounded
away from 0.
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Corollary 11.1. Let n0 ≥ p, α ≥ 0 and a, b > 0. Assume that (11.2) holds and as n → ∞,
(11.1) holds with probability tending to 1. Suppose a < σ2(xi) < b∥xi∥α for all i and that
for all n ≥ n0, a < min eig(X ′X)/n and (1/n)

∑
∥xi∥α+2 < b. Then

−2 logR(β0) →d χ2
(p) as n → ∞.

12. Linear Algebra

12.1. Variance. Suppose that Zi = Zi(β) = x′i(Yi − xiβ), where xi now the xi are not
random. If β = β0 in the regression model, then

V (Zi) = V (x′iϵi) = E(x′iϵ (x
′
iϵ)

′) = x′iE(ϵϵ′)xi = x′ixiσ
2(xi).

13. Simplex

A k-simplex is a k-dimensional polytope which is the convex hull of its k + 1 vertices.
Suppose the k + 1 points u0, . . . , uk ∈ Rn are affinely independent, which means u1 − u0,
. . . , uk − u0 are linearly dependent. Then the simplex determined by them is the set of
points

C = {θ0u0 + · · ·+ θkuk|θi ≥ 0, 0 ≤ i ≤ k,
k∑

i=0

θi = 1}.

Note that

θ0u0 + · · ·+ θkuk = u0 +

k∑
i=1

θi(ui − u0),

and u1 − u0, . . . , uk − u0 are linearly dependent. We can see that u0 causes ”affine” and
other points cause the figure.

Table 2. Simplex

0-simplex a single point
1-simplex a line
2-simplex triangle
3-simplex tetrahedron
4-simplex 5-cell

?⟨simplex⟩?

13.1. face. The convex hull of any nonempty subset of the n + 1 points that define an
n-simplex is called a face of the simplex. In particular, the convex hull of a subset of size
m+ 1 is an m-simplex, called an m-face of the n-simplex.

Remark 13.1. The number of m-faces is equal to the binomial coefficient
(
n+1
m+1

)
.

Example 1.
The vertices of tetrahedron are 4C1 = 4;
The edges of tetrahedron are 4C2 = 6;
The faces of tetrahedron are 4C3 = 4.
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14. Applications

EL method is applied to the problem of setting a confidence interval of

(1) means,
(2) regression models,
(3) generalized linear models,
(4) estimating equations,
(5) space curves estimated by kernel smooths.

Furthermore, they can be applied to

(6) quantiles

15. Advantages

15.1. ELR. The vantages are that

• it does not require us to specify a family of distributions for the data;
(cf. bootstrap, jackknife.)

• it makes an automatic determination of the shape of confidence regions;
(cf. parametric likelihood methods.)

• it enables the shape of a region

Empirical likelihood can be thought of as a bootstrap that does not resample, and as a
likelihood without parametric assumptions.

15.2. smoothed ELR.

• it is not necessary to accurately determine an “optimal” value of the parameter.
• it is Bartlett-correctable.

Table 3. Comparison of ELR and simple confidence interval

ELR Order A.B.C. order CI Order normal-approx
regular case O(n−1) O(n−2)

quantile O(n−1/2) (two-sided) sign-test CI O(n−1/2) O(n−1)
(or binomial-method)

smoothed O(n−1) O(n−2) Interpolation method O(n−1) not B.C.
?⟨default⟩?

16. Foundations

16.1. General version of Wilks’ theorem for quantiles. The error in the chi-squared
approximation is given by
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Table 4. with smoothing parameter

error A.B.C. order
O(n−1) O(n−2)

simple B.C. case o(n−1)
?⟨default⟩?

16.2. Questions.

(1) Ka.Plan-Meier estimator ?
(2) bootstrap ?
(3) Vapnik-Cervonenkis theory ? (exponentially fast ?)

16.3. Summary.

ELTs (empirical likelihood theorems ) ̸= Wilk’s theorem !!

EL method combines the reliability of the nonparametric method with the flexibility
and effectiveness of the likelihood approach.

The empirical likelihood is distinguished more by being a likelihood than by being em-
pirical.

16.4. On the parametric method. The vantages of the parametric method are that

(1) the effective estimators can be found;
(2) tests with good power properties can be constructed;
(3) its flexibility.

However, a problem with parametric inferences is that we might not know which para-
metric family to use and then

• the inefficiency is caused by such misspecification;
• the corresponding confidence intervals and tests can fail completely.

17. words

(1) fascinating うっとりさせる
(2) engagingly 人を引きつける
(3) vantage 強み
(4) inherent 本来備わっている
(5) facilitate を容易にする
(6) in-depth 詳細な
(7) myriad 無数の
(8) indulge を満足させる

(9) instill in 徐々に教え込む
(10) at a time 一度に
(11) offset 相殺する
(12) hindsight あと知恵
(13) rudimentary 初歩的な
(14) encompass 含む
(15) commendably 称賛に値するように

18. Further Reading

(1) http://www.stanford.edu/ owen/empirical
(2) Jing Qin
(3) Jerry Lawless
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(5) Mykland P. A. (1995) ”Dual likelihood”
(6) Mykland P. A. (1999) ”Bartelett identities and large deviations in likelihood theory”
(7) Hall and La Scala (1990)


