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“Far better an approximate answer to the right question, than the exact an-

swer to the wrong question, which can always be made precise.”

John Tukey

“Advice is what we ask for when we already know the answer but wish we

didn’t.”

Erica Jong
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Department of Pure and Applied Mathematics

Doctor of Philosophy

Asymptotic Theory for Non-standard Estimating Function and

Self-normalized Method in Time Series Analysis

by Yan Liu

In this dissertation, we develop asymptotic theory for non-standard estimat-

ing function and self-normalized method in time series analysis. Time series

analysis can be divided into two parts: time domain analysis and frequency do-

main analysis. In time domain analysis, we extend the estimating function to be

non-differentiable one for the scale parameter and the coefficients in the model.

The idea is also applied to generalize the definition of periodogram. In frequency

domain analysis, we explore the parameter estimation based on minimum con-

trast function with exotic disparity. We also give a counterexample which shows

that the functional based on periodogram for estimation is not always asymptoti-

cally normal. As an extension, we derive the asymptotic distribution of empirical

likelihood ratio statistics based on the Whittle disparity for the time series mod-

els with infinite variance. We complement the statistical inference for pivotal

quantity based on empirical likelihood method by estimating the tail index with

self-normalized method.
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Chapter 1

Introduction

This doctoral thesis develops the statistical inference theory including non-

standard estimating function and self-normalized method in time series analysis.

Generally, the statistical inference consists of point estimation and hypothesis

testing on independent identically distributed samples. In this dissertation, we

relax the restriction of the condition of independence but add the stationary

property to the assumption. For second order stationary time series models,

they can always be represented by linear models from Wold’s decomposition

theorem. Therefore, we focus on the asymptotic theory of the statistical infer-

ence in time series analysis, which furthermore can be divided into two parts:

time domain approach and frequency domain approach.

This dissertation consists of 7 chapters. All chapters are self-contained. The

list of chapters is given below:

Chapter 1 Introduction

Chapter 2 M-estimation in time series analysis

Chapter 3 Asymptotic properties of generalized spectral via M-estimators

Chapter 4 Parameter estimation based on minimum contrast estimators

Chapter 5 Quantile estimation in frequency domain

Chapter 6 Empirical likelihood method for time series with infinite variance

Chapter 7 Tail index estimation

As the structure of this dissertation, we start the argument from time do-

main approach and turn our mind to the frequency domain approach step by

step. Empirical likelihood method, a nonparametric method involving estimat-

ing functions, is preceded by the parametric approach mentioned in the sequel

of M-estimation in time domain and minimum contrast estimation in frequency

domain. We give the main scope of this dissertation below.

1



Introduction 2

In Chapter 2, we derive the asymptotic distribution of M-estimators for time

series models in time domain. It is remarkable that we do not only consider the

problem for the regular case in Huber’s sense, but also more generally, derive the

limiting results from the viewpoint of Lehmann. The M-estimation is a general

parametric approach, which includes several optimization methods like maxi-

mum likelihood method or minimal distance method. Asymptotic normality of

the estimation is given without the smoothness around the neighborhood of true

parameter. As a special case, maximum likelihood estimator for Gaussian pro-

cess is also included in our result. Not only location parameter, we also include

the scale parameter in our estimating functions. We can simultaneously estimate

the (absolute) moment of innovation process as we estimate the coefficients of

the model. Taking the Koenker and Bassett’s check function, a non-standard es-

timating function, we obtain the asymptotic results of estimation for coefficients

and the absolute first moment of innovation process.

In Chapter 3, we investigate the Laplace periodogram and further the quan-

tile periodogram, which are recently proposed from their robust characteristics.

In several equivalent definitions of the quantile periodogram, we define the quan-

tity as finite Fourier transformation of a plug-in statistic defined by the estimat-

ing function corresponding to the quantile. We used a general form for the

estimating function and derived the asymptotic distribution of the generalized

periodograms with different frequencies are independently exponential.

In Chapter 4, we obtain asymptotic properties of parameter estimation based

on minimum contrast estimators in frequency domain. The difference with previ-

ous work is that we do not use the direct location or scale disparity for minimum

contrast estimation. The approach we took is to extend the form of prediction

error and interpolation error in a consistent way and then obtain an exotic dis-

parity, which is not familiar for estimation. Asymptotic normality is derived

from the integration functional of periodogram and we found the case corre-

sponding to minimizing the prediction error is the best in the sense of efficiency

of the estimation.

In Chapter 5, we expand the idea of quantile in time domain to frequency

domain. The estimating function based on the integration functional of peri-

odogram is usually believed to lead an asymptotic result of normal. As for the

quantile estimation in frequency domain, we found it is a counterexample to

the belief and derived the asymptotic distribution consisting of a sandwich form

made by a normal distributed random variable inserted between two exponential

random variables. For estimation, if we smooth the periodogram by some win-

dow functions, then asymptotic normality of quantile estimation in frequency

domain is still obtained.



Introduction 3

In Chapter 6, we employ the empirical likelihood approach to test a hy-

pothesis containing a pivotal quantity observed in a heavy tailed process. The

estimating function involved in the empirical likelihood statistic is defined by

the form of prediction error, which is known as the best from Chapter 4. The

asymptotic distribution can be simply summarized by a squared form of a ra-

tio of two type stable distributed random variables with different exponent of

α and α/2. If we know α well, then the empirical likelihood statistic gives a

well-behaved confidence domain for the pivotal quantity.

Chapter 7 is a complement of Chapter 6 for estimating the exponent of

innovation process. We call the exponent by tail index in a general way. If a

sequence of random variables belongs to the domain of attraction α, then we can

calculate the moments of the limiting distribution of the self-normalized random

variables by the formula we proposed in this chapter. As a result, we can use

the moment estimator to estimate the innovation process from its simplicity.

The result shows its stability around an important bound 2 even for dependent

random variables.

Figure 1.1: Dependence chart of all chapters.

Figure 1.1 shows the relationship between all subsequent chapters. We treat

a general approach of estimating function in Chapter 2 in time domain. This idea

of estimating function can be generalized to the concept of the spectral density

given in Chapter 3. This is the first step toward the frequency domain approach.

On the other hand, the estimating function studied in frequency domain is used

in integration functional form, and usually called “minimum contrast estimator”,



Introduction 4

which is given in Chapter 4. We give a special aspect of estimation by integration

functional around the frequency estimation of the spectral distribution function

in Chapter 5. In Chapter 6, we use the most efficient form of the minimum

contrast estimator as estimating function in empirical likelihood ratio and show

asymptotic distribution of the statistics by self-normalized method. Lastly, we

investigate the moments of the limiting distribution of the self-normalized ran-

dom variables and link the result to the estimation of tail index.



Chapter 2

M-estimation in Time Series

Analysis

2.1 Introduction

In Chapter 2, we review a general approach of estimating functions, M-estimation,

before going into non-standard case. Historically, Hodges and Lehmann (1963)

proposed a lemma on the asymptotic normality for the estimation of location

of independent identically distributed (i.i.d.) samples. Huber (1964) general-

ized the idea into M-estimation concept and investigated the robustness of the

estimators.

In time series settings, there are two types of M-estimation, one is done

in time domain and the other is in frequency domain. M-estimation in time

domain aims at the maximum likelihood approach and eventually settles on the

quasi-likelihood method. On the other hand, M-estimation in frequency domain

aims at the search of the structure of the model. In Chapter 2, we work on M-

estimation in time domain, but first give a short review on the frequency domain

for the comparison in the following. For the regularity, we always assume the

considered process {X(t)} is second order stationary. Under the condition, the

process {X(t)} has its own spectral density f(λ) in the frequency domain. The

parameter estimation is based on the periodogram

In,X(ω) =
1

2πn

{ n∑
t=1

X(t)eitω
}{ n∑

t=1

X(t)eitω
}∗
,

which is defined on the observed stretch {X(1), . . . , X(n)}. The Whittle estima-

tor, the origin of semiparametric estimation, is defined as the minimizer of

D(fθ, In,X) =

∫ π

−π
[log det{fθ(ω)}] + tr{In,X(ω)fθ(ω)

−1}dω.

5



2.1 Introduction 6

The asymptotic normality of the Whittle estimator under regular conditions was

shown in Dzhaparidze (1971), Dunsmuir (1979), Hannan (1973b) and Hosoya and

Taniguchi (1982). For semiparametric estimation, see Beran (1978).

In this chapter, we suppose the process {X(t)} has a unique one-sided au-

toregressive (AR) representation in time domain as

∞∑
j=0

b(j)(X(t− j)− µ) = ϵ(t),

with b(0) = 1. The process is second order stationary with independent ϵ(t) iden-

tically distributed as (0, σ2), and may has some “nice” structures for dependent

data, such as ergodicity and mixing conditions. For example, the asymptotics of

the process under mixing conditions is well investigated in Ibragimov and Linnik

(1971).

Even if the the process is second order stationary nonlinear, the process can

be decomposed into a linear part and a deterministic part (Wold’s decomposi-

tion), and in turn it has AR(∞) representation since the process is invertible

(See Brockwell and Davis (1991), p.90).

For M-estimation, the problem may be generalized as follows. We assume

that the AR(∞) representation of the model is characterized by a finite dimen-

sional vector θ = (θ1,η
T )T . That is to say, the model is defined by

∞∑
j=0

b(j;η)X(t− j) = ϵ(t),

where b(0) = 1 and {ϵ(t)} is i.i.d. (0, θ1). The parameter θ1 denotes the scale

parameter of the model, and the remaining parameters (θ2, . . . , θp)
T is denoted

by η. The true parameter is represented by θ0.

Define the residual process e(t;η) and its corresponding form in the following

way:

e(t;η) =

t−1∑
j=0

b(j;η)X(t− j), r(t;θ) = θ
−1/2
1 e(t;η), (2.1.1)

ϵ(t;η) =
∞∑
j=0

b(j;η)X(t− j), v(t;θ) = θ
−1/2
1 ϵ(t;η). (2.1.2)

The approximate maximum likelihood estimator is equivalent to finding the so-

lution of
n∑

t=2

r(t;θ)∂θr(t;θ)− c(θ) = 0,

which is considered in Beran (1994). They extend the estimator to a class of
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Z-estimators and investigate the robustness under Gaussian long-memory situa-

tion.

We look into the properties of M-estimators in both non-differentiable and

differentiable cases of the objective functions. Even we showed the asymptotic

normality of M-estimator with non-differentiable objective function under some

regular conditions, the asymptotic variance matrix of the estimator is not ex-

plicitly obtained. For this reason, we give the asymptotic variance matrix of the

estimator under the differentiable conditions. The objective function is consid-

ered to be convex, so the corresponding M-estimator includes LAD estimators

(see Niemiro (1992)). We also extend the result to Mm-estimator since the class

is much richer. The class includes Oja’s median and even Hodges-Lehmann’s

estimators of location (see Bose (1998)). The proof is similar to the method for

U statistics in depend case, which is in order examined by Hoeffding (1948), Sen

(1972), Yoshihara (1976) and Denker and Keller (1983).

This chapter is organized as follows. In section 2.2, we review the sufficient

conditions for asymptotic normality of M-estimators. Without the condition of

differentiability for the convex objective function, we derive asymptotic normal-

ity of M-estimators in time series settings under the new class of conditions in

2.3. Also, the asymptotic result is given in the detailed way if the objective

function is differentiable in Section 2.4. In section 2.5, we extend the result to

Mm-estimators. Section 2.6 contains two important cases of the inference in time

series analysis as examples of the main result. We give some numerical results

in Section 2.7.

2.2 Asymptotic Normality of M-estimators

First we revisit the work of Niemiro (1992) and Hodges and Lehmann (1963) in

this section.

Suppose ϵ, ϵ(1), . . . , ϵ(n) are i.i.d. random variables. Let ρ(θ, ϵ) be a real

function defined for θ ∈ Rp and g(θ, ϵ) be a subgradient of ρ(θ, ϵ). Define

Q(θ) = Eρ(θ, ϵ).

The empirical analog of Q(θ) is defined by

Qn(θ) =
1

n

n∑
i=1

ρ(θ, ϵ(i)).

Remark 2.2.1. The definition of Qn(θ) is optimal in the regular class of esti-

mating functions for i.i.d. samples. For details, see Godambe (1960), Godambe
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and Thompson (1978) and Godambe and Thompson (1984).

Denote the corresponding score function ξn(θ). Usually, ξn(θ) is considered

as ∇Qn(θ), where ∇ is an operation which means the differentiation with respect

to θ. In the case of nonexistence of unique θ̂n, set the ith element θ̂ni of minimizer

θ̂n satisfying

θ̂ni = αiθ
∗
ni + (1− αi)θ

∗∗
ni ,

for 0 ≤ αi ≤ 1 (i = 1, . . . , p), where

θ∗ni = sup{r : ξni(r) ≥ 0},

θ∗∗ni = inf{r : ξni(r) ≤ 0}.

Assumption 2.2.2 (Niemiro (1992)).

(i) ρ(θ, ϵ) is convex with respect to θ for each fixed ϵ.

(ii) Q(θ) is well defined, that is, the expectation exists and is finite for all θ.

(iii) θ0 satisfying Q(θ0) = minθQ(θ) exists and is unique.

(iv) E|g(θ, ϵ)|2 <∞ for each θ in a neighborhood of θ0.

(v) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

Assumption 2.2.3 (Hodges and Lehmann (1963), Inagaki and Kondo (1980)).

(i) ξn(θ) is a non-decreasing function of every element of θ.

(ii) For any vector valued u, it holds that

√
n(ξn(θ

0 + u/
√
n)− ξn(θ

0))
P−→ HTu,

where H is a positive definite matrix.

(iii)
√
nξn(θ

0)
L−→ N (0, V ).

Lemma 2.2.4. Under each of Assumption 2.2.2 or Assumption 2.2.3, it holds

that
√
n(θ̂n − θ0)

L−→ N (0,H−1V H−1),

where H = ∇2Q(θ0) and V = Var g(θ0).

Proposition 2.2.5. If ρ(θ, ϵ) is differentiable with respect to θ in a neighborhood

of θ0, then Assumption 2.2.2 implies Assumption 2.2.3.
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Proof. From Assumption 2.2.2 (i) and (ii), we see that ξn(θ) is a non-decreasing

function of all elements of θ. Next, according to Niemiro’s proof, we see, for

each θ in a neighborhood of θ0,

Qn(θ +
u√
n
)−Qn(θ)−

uT

√
n
∇Qn(θ)−Q(

u√
n
,θ)

P−→ 0. (2.2.1)

Differentiate the equation with respect to θ above and substitute θ = θ0, and

ξn(θ
0 +

u√
n
)− ξn(θ

0)− uT

√
n
∇2Qn(θ

0)
P−→ 0.

From Assumption 2.2.2 (v), it holds that

∇2Qn(θ
0)

P−→ ∇2Q(θ0),

and by Theorem 4.1 of Billingsley (1968), we obtain the desirable result:

√
n(ξn(θ

0 + u/
√
n)− ξn(θ

0))
P−→ ∇2Q(θ0)Tu.

Under Assumption 2.2.2 (iv), we have the last result,

√
nξn(θ

0)
L−→ N (0, V ).

Remark 2.2.6. We mainly show the result by (2.2.1) in the subsequent section.

It is sufficient for the asymptotics. (See Niemiro (1992).)

2.3 Estimation in Linear Time Series Models

For time series model, we consider ρ(θ
−1/2
1 , e(t;η)), which sometimes is written

as ρ(θ) for short. In this section, we only assume ρ(θ) is convex with respect to

each parameter. Generally, consider θ = (θ1,η
T )T in a compact set Θ ⊂ Rm,

where η = (θ2, . . . , θp)
T . For simplicity, we write

Q(θ) = Eρ(θ
−1/2
1 , e(t;η)). (2.3.1)

The true value of θ, represented by θ0, is defined by

Q(θ0) = min
θ∈Θ

Q(θ). (2.3.2)
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The sample version corresponding to the objective function is

Qn(θ) =
1

n

n∑
t=1

ρ(θ
−1/2
1 , e(t;η)),

and

θ̂n = argmin
θ∈Θ

Qn(θ). (2.3.3)

Assumption 2.3.1.

(i) ρ(θ) is convex with respect to θ.

(ii) Q(θ) is well defined.

(iii) θ0 satisfying (2.3.1) exists and is unique.

Since ρ(θ) is a convex function, there exists a subgradient of ρ(θ), which is

denoted by g(θ) satisfying

ρ(α) + (β −α)Tg(α) ≤ ρ(β)

for all α,β ∈ Rd. Without loss of generality, we consider the case θ0 = 0 and

Q(0) = 0. It is easy to see that

αTg(0) ≤ ρ(α)− ρ(0) ≤ αTg(α),

0 ≤ ρ(α)− ρ(0)−αTg(0) ≤ αT (g(α)− g(0)).

For α = (α1,α
T
2 )

T , we use the following symbols for the simplicity of the

notations:

ρ(t;
α√
n
) := ρ((θ0

1 +
α1√
n
)−1/2, e(t;η0 +

α2√
n
)),

ρ(t;0) := ρ((θ0
1)

−1/2, e(t;η0)) = ρ((θ0
1)

−1/2, ϵ).

g(t; ·) is also defined in the same way. At neighborhood of θ0, we have, for each

t,

0 ≤ ρ(t;
α√
n
)− ρ(t;0)− αT

√
n
g(t;0) ≤ αT

√
n
(g(t;

α√
n
)− g(t;0)). (2.3.4)

Assumption 2.3.2.

(i) For all i (1 ≤ i ≤ p) and α in a neighborhood of θ0,

∞∑
k=1

E|
(
g(1;α)i − g(1;0)i

)(
g(k;α)i − g(k;0)i

)
| <∞.
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(ii) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

Remark 2.3.3. Assumption 2.3.2.(i) is a condition to control the correlation of

the score function.

Theorem 2.3.4. Let θ̂n be defined in (2.3.3) under Assumptions 2.3.1 and 2.3.2.

Then we obtain

(i) θ̂n converges to the true value θ0 in probability as n→ ∞.

(ii)
√
n(θ̂n − θ0) has a joint asymptotic normal distribution whose mean is 0

and the asymptotic covariance matrix is give by H−1V H−1, where

H = ∇2Q(θ0),

V = Var g(θ0).

Proof. First, we show (2.2.1) holds in this case. For fixed α, define Ynt as

Ynt = ρ(t;
α√
n
)− ρ(t;0)− αT

√
n
g(t;0).

Then it holds that

EYnt = Q(
α√
n
),

n∑
t=1

Ynt =
n∑

t=1

ρ(t;
α√
n
)− ρ(t;0)− αT

√
n
g(t;0).

From (2.3.4), we have

Var
n∑

t=1

Ynt ≤ E
( n∑
t=1

Ynt

)2
= E

n∑
t=1

n∑
s=1

{
ρ(t;

α√
n
)− ρ(t;0)− αT

√
n
g(t;0))

}
×
{
ρ(s;

α√
n
)− ρ(s;0)− αT

√
n
g(s;0))

}
≤ E

n∑
t=1

n∑
s=1

1

n
αT (g(t;

α√
n
)− g(t;0))(g(s;

α√
n
)− g(s;0))Tα

≤ 2E

n−1∑
k=0

n− k

n
αT (g(1;

α√
n
)− g(1;0))(g(k + 1;

α√
n
)− g(k + 1;0))Tα.

(2.3.5)

Also, for any k (1 ≤ k ≤ n − 1), g(k; α√
n
) − g(k;0) ≥ 0 almost surely, and

since its expectation, which is bounded by 2E
∑p

i=1 α
2
i

∑∞
k=1|g(1;α)i − g(1;0)i|
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×|g(k;α)i − g(k;0)i|, goes to 0 by monotone convergence theorem, we obtain

g(k;
α√
n
)− g(k;0)

a.s.−−→ 0.

Again, by monotone convergence theorem, the right hand side of (2.3.5) con-

verges to 0. Therefore, by Chebyshev’s inequality, we have

n∑
t=1

Ynt − nEYnt
P−→ 0,

where nEYnt → ∇2Q(θ0) by the Talor expansion. Asymptotic normality of

n−1/2
∑

g(t;θ0) follows from the classic central limit theorem under the As-

sumption 3.2.(ii).

Remark 2.3.5. Note that Ynt is not independent, which is different from Niemiro

(1992).

2.4 Estimation with Differentiable Objective Func-

tions

As mentioned in Basawa (1985), a general method of establishing the asymp-

totic normality of M-estimators is to use martingale theory, although there are

several ways like assuming some mixing conditions in time series context. In

this section, we suppose the objective function satisfies the differentiable con-

ditions and therefore the result can be further shown easily and concretely by

the martingale difference central limit theorem. The central limit theorem for

θ̂n is proved by Hodges-Lehmann’s criteria, which has been given in Section

2.2. Consider ρ(θ
−1/2
1 , e(t;η)) ≡ ρ(x, y). For simplicity of notation, we write

ρ(t;θ) = ρ(θ
−1/2
1 , e(t;η)) where θ = (θ1,η

T )T ∈ Θ ⊂ Rm: compact if it is not

necessary to think θ1 and η in a separate way. Here θ1 is a scale parameter and

η = (θ2, . . . , θp)
T .

The objective function is denoted by

Q(θ) = Eρ(θ
−1/2
1 , e(t;η)).

The true value of θ, represented by θ0, is defined by

Q(θ0) = min
θ∈Θ

Q(θ). (2.4.1)
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On account of the simplicity of notation, we use ς and η0 for the true value of θ1

and η separately. The sample version corresponding to the objective function is

Qn(θ) =
1

n

n∑
t=1

ρ(θ
−1/2
1 , e(t;η)),

and the estimator is defined by

θ̂n = argmin
θ∈Θ

Qn(θ). (2.4.2)

Let ρx, ρy be the partial derivative of ρ(x, y) with respect to x and y, B(t) be

the σ-field generated by the set of random variables {X(n); n ≤ t}. As seen in

the definition of ρ(θ
−1/2
1 , e(t;η)), it is B(t)-measurable. Also, by (2.1.1), we can

see that ∂
∂η e(t;η) is B(t− 1)-measurable.

Assumption 2.4.1.

(i) Let ρ(θ) be a measurable convex function with respect to θ from R×Rp−1

to R.

(ii) Q(θ) is well defined.

(iii) θ0 satisfying (2.4.1) exists and is unique.

(iv) Eρx(θ
0) = 0 and Eρy(θ

0) = 0.

(v) Eρ(θ0)2 < ∞, Eρy(θ
0)2 < ∞, E( ∂2

∂η∂ηT e(t;η)|θ=θ0)T ( ∂2

∂η∂ηT e(t;η)|θ=θ0)

and

E( ∂
∂η e(t;η)

∂
∂ηT e(t;η))

T ( ∂
∂η e(t;η)

∂
∂ηT e(t;η)) exist.

(vi) Define ρ̃(t;θ0) ≡ ρy(t;θ
0) ∂

∂η e(t;η)
∣∣∣
θ=θ0

. To show central limit theorem for

the martingale difference sequence {ρ̃(t;θ0),B(t)}, we suppose the Linde-

berg condition, by Euclidean norm ∥ · ∥ and indicator function 1( · ),

1

n

n∑
t=1

E(∥ρ̃(t;θ0)∥21(∥ρ̃(t;θ0)∥ ≥ ϵ)) → 0,

1

n

n∑
t=1

E(ρ̃(t;θ0)ρ̃(t;θ0)T
∣∣∣B(t− 1))

P−→ S,

where

S = Eρ̃(t;θ0)ρ̃(t;θ0)T .

Remark 2.4.2. As a result of Assumption 2.4.1.(i), ρx(θ) and ρy(θ) are also

functions from R× Rp−1 to R.
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Remark 2.4.3. In the L2 theory, set ρ : R× Rp−1 7→ R as

ρ(x, y) = (xy)2 − 2 log x. (2.4.3)

In this case, suppose σ2 is the variance of the innovation process and then the

true value of θ1 is given by θ1 = σ2, that is, θ
−1/2
1 = σ−1. The asymptotic result

of Theorem 2.4.6 given below is the same as that for the Whittle estimator in

the frequency domain in the case of second-order stationary process.

Remark 2.4.4. θ1 can be a scale parameter different from the variance of the

innovation process. As an example, let the objective function be defined as

follows:

ρ(x, y) = (xy)k − k

k − 2
xk−2.

Then it is easy to see that ς is Eϵ(t)k. Note that in most cases in time series

analysis, Eϵ(t) is assumed to be 0 or the symmetricity of ϵ(t) is assumed. As an

alternative, θ1 can be defined by

ρ(x, y) = (x|y|)k − k

k − 2
xk−2,

then ς is E|ϵ(t)|k.

Remark 2.4.5. Since the random structure of ρx(θ) is the same as ρ(θ), it is

sufficient to only suppose Eρ(θ0)2 <∞.

The asymptotic result of M-estimation in time domain is given in the follow-

ing theorem.

Theorem 2.4.6. Let θ̂n be defined by (2.4.2) under Assumption 2.4.1. Then we

obtain

(i) θ̂n converges to the true value θ0 in probability as n→ ∞.

(ii)
√
n(θ̂n − θ0) have a joint normal distribution asymptotically whose mean

is 0 and the asymptotic covariance matrix is give by H−1V H−1, where

H =

1
2 ς

−3Eρxx(θ
0) 0

0 Eρyy(θ
0)E ∂

∂η e(t;η)
∂

∂η′ e(t;η)
∣∣∣
θ=θ0

 ,

V =

Eρx(θ0)2 0

0 Eρy(θ
0)2E ∂

∂η e(t;η)
∂

∂η′ e(t;η)
∣∣∣
θ=θ0

 .

In the case of Gaussian process with the objective function (2.4.3), the covariance

matrix is

V = 2D−1,
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where

Dij = (2π)−1
{∫ π

−π

∂

∂θi
log f(λ)

∂

∂θj
log f(λ) dx

}∣∣∣
θ=θ0

,

and f(λ) is the spectral density of the model.

Proof. We will show Assumption 2.4.1 satisfies Assumption 2.2.3. From the

definition,

ξn(θ) =
1

n

n∑
t=1

(−1

2
θ
−3/2
1 ρx(θ), ρy(θ)

∂

∂ηT
e(t;η))T .

(i) If ρ is convex, then its derivative g is a non-decreasing function in each

argument.

(ii) Stochastic expansion of ξn(θ) yields

√
n(ξn(θ

0 + u/
√
n)− ξn(θ

0)) =
1

n

n∑
t=1

∇ξn(θ
0)Tu+ op(n

−3/2).

The (1, 1)-element of ∇ξn(θ) is

∇ξn(θ
0)11 =

1

n

n∑
t=1

(−1

2
ς−3/2ρxx(t;θ

0) +
3

4
ς−5/2ρx(t;θ

0)).

Since Eρx(θ
0) = 0 and ρx(θ

0) is B(t)-measurable, {ρx(t;θ0)} is i.i.d. se-

quence with mean 0 and finite variance. Thus it holds that

∇ξn(θ
0)11

P−→ −1

2
ς−3/2Eρxx(θ

0),

since
n∑

t=1

3

4
ς−5/2ρx(t;θ

0)
P−→ 0.

Similarly, we have (i, j)-element of ∇ξn(θ) (i ≥ 2, j ≥ 2),

∇ξn(θ
0)ij =

1

n

n∑
t=1

ρyy(t;θ
0)
∂

∂η
e(t;η)

∂

∂ηT
e(t;η)

∣∣∣
θ=θ0

+
1

n

n∑
t=1

ρy(t;θ
0)

∂2

∂η∂ηT
e(t;η)

∣∣∣
θ=θ0

.

The last term in the right hand side of the equation above forms a mar-

tingale since b(0) = 1 implies that ∂
∂η e(t;η) and ∂2

∂η∂ηT e(t;η) is B(t− 1)-

measurable. Noting that

Eρy(θ
0)

∂2

∂η∂ηT
e(t;η)

∣∣∣
θ=θ0

= E
(
Eρy(θ

0)
( ∂2

∂η∂ηT
e(t;η)

∣∣∣
θ=θ0

) ∣∣∣B(t− 1)
)
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= E
∂2

∂η∂ηT
e(t;η)

∣∣∣
θ=θ0

Eρy(θ
0) = 0,

under Assumption 2.4.1.(v), we obtain

∇ξn(θ
0)ij

P−→ Eρyy(θ
0)E

∂

∂η
e(t;η)

∂

∂η′ e(t;η)
∣∣∣
θ=θ0

.

By Chebyshev’s inequality, the last term is shown to converge to 0 in prob-

ability.

(iii) Consider

√
nξn(θ

0) = n−1/2
n∑

t=1

(
−1

2
ς−3/2ρx(θ

0), ρy(θ
0)

∂

∂ηT
e(t;η)

∣∣∣
θ=θ0

)T
.

As seen in (ii), {ξn(θ0),B(n)} is a martingale with respect to B(n). Under

Assumption 2.4.1, we have

√
nξn(θ

0)
L−→ N (0, V ),

where

V =

Eρx(θ0)2 0

0 Eρy(θ
0)2E ∂

∂η e(t;η)
∂

∂ηT e(t;η)
∣∣∣
θ=θ0

 .

As a result, the asymptotic normality for θ̂ is shown and the asymptotic

variance is given by H−1V H−1.

2.5 Asymptotic Results of Mm-Estimators

In this section, we give conditions for asymptotic normality of Mm-estimators.

Let the objective function be defined by

Q(θ) = Eρ(θ
−1/2
1 , e(1;η), . . . , e(m;η)),

with the true value defined by

Q(θ0) = min
θ∈Θ

Q(θ). (2.5.1)



2.5 Asymptotic Results of Mm-Estimators 17

The sample analog of Qn(θ) is defined by

Qn(θ) =

(
n

m

)−1 ∑
1≤i1<···<im≤n

ρ(θ
−1/2
1 , e(i1;η), . . . , e(im;η)),

and the estimator is defined by

θ̂n = argmin
θ∈Θ

Qn(θ). (2.5.2)

Assumption 2.5.1.

(i) ρ(θ) is convex with respect to θ and symmetric in each component e(i;η).

(ii) Q(θ) is well defined.

(iii) θ0 satisfying (2.5.1) exists and is unique.

(iv) For all i (1 ≤ i ≤ p) and α in a neighborhood of θ0,

∞∑
k=1

E|
(
g(1;α)i − g(1;0)i

)(
g(k;α)i − g(k;0)i

)
| <∞.

(v) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

Theorem 2.5.2. Let θ̂n be defined by (2.5.2) under Assumption 2.5.1. Then we

obtain

(i) θ̂n converges to the true value θ0 in probability as n→ ∞.

(ii)
√
n(θ̂n − θ0) asymptotically has a joint normal distribution whose mean is

0 and the asymptotic covariance matrix is give by m2H−1V H−1, where

H = ∇2Q(θ0)

V = Var g(θ0).

Proof. Let J denote the set of all m element subsets of {1, . . . , n}. For any j =
{i1, . . . , im} ∈ J , let Yj be the random vector (e(i1), . . . , e(im)). Accordingly, the

notation ρ(t; α√
n
) and ρ(t;0) are changed in the following way: for α = (α1,α2),

ρ(j;
α√
n
) := ρ((ς +

α1√
n
)−1/2, Yj(η

0 +
α2√
n
)),

ρ(j;0) := ρ(ς−1/2, Yj(η
0)).

For any fixed α and j, define

Znj = ρ(j;
α√
n
)− ρ(j;0)− αT

√
n
g(j;0).
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Note that EZnj = Q( α√
n
). For the same reason, we have

Var
∑

Znj
P−→ 0.

Since Var(n
(
n
m

)−1∑
Znj) ≤ m2Var

∑
Znj ,

n

(
n

m

)−1∑
Znj − nEZnj

P−→ 0.

Thus the result of Theorem 2.5.2 depends on the asymptotics of
√
n
(
n
m

)−1∑
g(j;0).

Regard g(j;0) as a kernel of U-statistics, we define the degenerate kernel of g(0)

by

gc
0(x1, . . . , xc) =

c∑
r=0

(
c

r

)
(−1)c−r

∫
· · ·
∫
Rm−r

g(θ0, x1, . . . , xm)

m∏
i=r+1

dF (xi).

Suppose Un is generated by g(0) and U c
n is generated by gc

0, we have, by Hoeffd-

ing’s projection, that

Un =

m∑
c=1

(
m

c

)
U c
n =

m

n

n∑
t=1

g(t;0) +Rn,

where Rn
P−→ 0. The conclusion is completed by the asymptotic normality of

n−1/2
∑n

t=1 g(t;0).

2.6 Examples

Suppose the second order stationary process {X(t)} is generated by the model

X(t)− β0X(t− 1) = ϵ(t),

where ϵ(t) ∼ i.i.d. (0, σ2). For the estimation of β0, take

b(j;η) =

β j = 1,

0 j ≥ 2.

2.6.1 Asymptotics of L2 theory in AR(1) case

From Remark 2.4.3, the objective function in L2 theory is given by

Qn(θ) = log θ1 +
1

n

n∑
t=2

θ−1
1 (X(t)− βX(t− 1))2 + op(1).
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Note that the objective function is asymptotically equivalent to Whittle estima-

tor. Also, the estimator is a modification of least square estimation since the

scale parameter is estimated simultaneously. With

ρx(θ
0) =

2ϵ2

σ
− 2σ, ρy(θ

0) =
2ϵ

σ2
,

ρxx(θ
0) = 2σ2 + 2ϵ2, ρyy(θ

0) =
2

σ2
,

by Theorem 2.4.6 we obtain

H =

(
2σ−1 0

0 2(1− β20)
−1

)
,

V =

(
4σ−2(µ4 − σ4) 0

0 4(1− β20)
−1

)
,

where µ4 is the fourth moment of ϵ(t). As a result, it holds that

√
n(θ̂n − θ)

L−→ N (0, diag(κ4 − σ4, 1− β20)).

In the Gaussian case, κ4 − σ4 = 2σ4.

2.6.2 Asymptotics of L1 theory in AR(1) case

One parametrization for L1 case is to set k = 1 in Remark 2.4.4. In this subsec-

tion, we are interested in another parametrization with convex objective function

defined by Koenker and Bassett (1978)’s check function ρτ (u). The check func-

tion ρτ (u) is given by

ρτ (u) = u(τ − 1(u < 0)),

where 1(·) is the indicator function. Two examples with τ = 0.5 and τ = 0.1

are shown in the following figures.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

Figure 2.1: Koenker and Bassett (1978)’s check function with τ = 0.5(left)
and τ = 0.1(right).
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As seen from two figures, the objective function is not differentiable around

the origin. This is why we have to explore the non-standard case in Section 2.3.

A straightforward understanding for the function is to regarded it as a weighting

function on the observations {X(1), . . . X(n)}. The median is corresponding to

the symmetric objective function and the lower quantile is corresponding to a

weighting function with larger weight on the smaller samples.

With estimation of the scale parameter in the linear model, suppose ρ(x, y)

is defined by

ρ(x, y) = ρτ (xy) + x−1.

Then the true parameters are given by

ς =
1

2
E|ϵ|, b(j;η0)(η0) = β0δ(j, 1) for j ≥ 1,

from the result that Eϵ(t)1(ϵ(t) > 0) = 1
2E|ϵ| and EX(t − 1)1(e(t;η) < 0) ̸= 0

if b(j;η) ̸= β0. Interestingly, the true parameters do not depend on τ , even τ is

included in the check function.

To generalize the result, we suppose a misspecification case, that is to say,

we suppose that

ζ = P (ϵ < 0),

where ζ is different from τ in the check function. Then we obtain

ρx(θ
0) = ϵ(τ − 1(ϵ < 0))− ς, ρxx(θ

0) = 2ς3/2,

ρy(θ
0) = ς(τ − 1(ϵ < 0)), ρyy(θ

0) = δ(ϵ),

where δ(·) is the Dirac delta function. In conclusion, the asymptotic variance of

the M-estimator defined by ρτ (u) is given by

H−1V H−1 =

(
1
4 ς

−3(τ2ς2 + (1− 2τ)a) 0

0 τ2−2τζ+ζ
σ2 f(0)−2(1− β20)

)
,

where a = Eϵ21(ϵ < 0). As a special case ζ = τ , the variance of the coefficient

parameter is given by
τ(1− τ)

σ2
f(0)−2(1− β20).
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2.7 Numerical Results

We carry out the numerical experiments for the estimation of coefficient param-

eters in AR(1) models, i.e., for different β0,

X(t)− β0X(t− 1) = ϵ(t), ϵ(t) ∼ i.i.d. N (0, σ2).

The estimations are repeated 100 times on 1000 samples generated from the

AR(1) model. We give the average of the estimated coefficient for the model

in the left figure and simultaneously the root mean square error (RMSE) in the

right figure. All cases are classified by the true parameter β0.

(1) β0 = 0.1
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1.2 1.4 1.6 1.8 2.0

0.034
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Figure 2.2: β̂0 (left) and RMSE (right) by Lt estimates (1 ≤ t ≤ 2).

(2) β0 = 0.3
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1.2 1.4 1.6 1.8 2.0
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0.032

0.034

0.036

Figure 2.3: β̂0 (left) and RMSE (right) by Lt estimates (1 ≤ t ≤ 2).

(3) β0 = 0.5
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Figure 2.4: β̂0 (left) and RMSE (right) by Lt estimates (1 ≤ t ≤ 2).

(4) β0 = 0.7
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Figure 2.5: β̂0 (left) and RMSE (right) by Lt estimates (1 ≤ t ≤ 2).

(5) β0 = 0.9
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Figure 2.6: β̂0 (left) and RMSE (right) by Lt estimates (1 ≤ t ≤ 2).



Chapter 3

Asymptotic Properties of

Generalized Spectral via

M-estimators

3.1 Introduction

In chapter 3, we develop asymptotic theory for the generalized spectral, which

provides a characterization of the intrinsic properties in the time series {X(t)}.
As an example, second order stationary process {X(t)} has a characteristic of

serial autocovariances independent of any time points but only depend on the

interval between two time points. The spectral density function of the process

then gives a Fourier transformation of all serial autocovariances. Not restricting

to the serial autocovariances, the spectral density function can be always sup-

pose to be a Fourier transformation of serial intrinsic properties of the process.

Nowadays, quantile and copula-related spectral density function is proposed in

many different literature.

For the estimation of the spectral density, periodogram plays a crucial role

in time series analysis. Li (2008) proposed Laplace periodogram for estimation

for zero-crossing spectral. The robust aspects of Laplace periodogram in the

case of heavy tailed models and nonlinear time series models are also shown in

numerical way in the paper. The sequential paper Li (2012) has generated the

Laplace periodogram to the quantile periodogram and investigated the asymp-

totic properties of them. On the other hand, Hagemann (2011) also examine the

quantile periodogram by another definition. The properties of

(i) summarizing the cyclical behavior of time series,

(ii) capturing systematic changes in the impact of cycles,

23
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(iii) complementing the defect of consideration on autocovariance function,

possessed by the quantile periodogram, are given in the paper. Furthermore,

several generalizations for the periodogram and investigation of asymptotic prop-

erties have been much studied recently. (See Kley et al. (2014) and Skowronek

et al. (2014)).

In the following sections, we give the definition of the quantile periodogram

and generalize the idea via M-estimators, which we mentioned in Chapter 2. In

Section 3.2, we review the origin of the Laplace periodogram and its extension to

the quantile periodogram. The quantile periodogram has an equivalent definition

for calculation in statistics, which is given in Section 3.3. We extend the idea to

the generalized periodogram in Section 3.4. For the proof of Theorem 3.4.3, we

review the concept of stochastic equicontinuity in Section 3.5 and give the proof

in Section 3.6. The notations and symbols used in Chapter 3 are listed in the

following: 1(·) denotes the indicator function; e denotes the Napier’s constant; Id

denotes the d-dimensional identity matrix; νn(·) denotes the empirical process;
P−→ and

L−→ denote the convergence in probability and the convergence in law,

respectively.

3.2 Quantile Periodogram

For a discrete stochastic process {X(t); t ∈ Z}, the Laplace periodogram Ln(λj)

is defined based on its observation stretch {X(t); t = 1, . . . , n} by

Ln(λj) =
n

4
∥β̂n(λj)∥22, (3.2.1)

where

β̂n(λj) := arg min
β∈R2

n∑
t=1

|X(t)− cTt (λj)β|, (3.2.2)

and

ct(λj) = (cos(t λj), sin(t λj))
T .

Here, λj is supposed to be

2πj

n
, j = 0,±1, . . . ,±(n− 1). (3.2.3)

The definition of the Laplace periodogram by (3.2.1) and (3.2.2) is a di-

rect extension of the ordinary periodogram from the property that the ordinary
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periodogram is decomposed by

In,X(λj) = |dn,X(λj)|2, dn,X(λj) =
1√
2πn

n∑
t=1

X(t)eitλj ,

where dn,X(λj) can be regarded as a regression on the observation stretch {X(1),

. . . , X(n)}.

The Laplace periodogram is an original idea of the quantile periodogram.

It is easy to see that the change in the definition of the Laplace periodogram

from the ordinary periodogram is that the distance to be minimized between the

observation and trigonometric regressor varied from l2-norm to l1-norm. Not

only the symmetric l1-norm, the distance can be also defined by Koenker and

Bassett’s check function ρτ (u), i.e.,

ρτ (u) = u(τ − 1(u < 0)).

The figures for this function are given in Figure 2.1 in Chapter 2 for reference.

The quantile periodogram is defined on the check function ρτ (u) by

Qn(λj) =
n

4
∥β̂n(λj)∥22, (3.2.4)

where

β̂n(λj) := arg min
β∈R2

n∑
t=1

ρτ (X(t)− λ− cTt (λj)β),

and

ct(λj) = (cos(t λj), sin(t λj))
T .

Asymptotic properties of the quantile periodogram are investigated in Li

(2008, 2012) in a general way by so called quantile regression Lemma. For the

introduction of Lemma, we first impose assumptions on the process

X(t) = µ(t) + ϵ(t), (3.2.5)

where µ(t) is a deterministic process and ϵ(t) is a random process whose marginal

distribution is given by Ft(x) and bivariate marginal distribution given by Fst(x1,

x2). The regression estimator β̂n is given by

β̂n := arg min
β∈Rp

n∑
t=1

ρτ (X(t)− cTt β). (3.2.6)
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Several notations in Assumption 3.2.1 and Lemma 3.2.2 below are given by

ft(x) := F ′
t(x),

δt := cTt β0 − µ(t),

γst(x1, x2) := Fst(x1, x2)− Fs(x1)Ft(x2),

Hn := n−1
n∑

t=1

ft(δt)ctc
T
t ,

Vn := n−1
n∑

t=1

n∑
s=1

γst(x1, x2)ctc
T
s .

As similar to Serfling (1980), the notation for asymptotic normality for d dimen-

sional random variables {X(t); t = 1, . . . , n} in Serfling’s sense is given by

Xn
L−→ AN (µn,Σn),

which actually makes sense in mathematics by

Σ−1
n (Xn − µn)

L−→ N (0, Id).

Assumption 3.2.1. For (3.2.5), suppose the following assumptions hold.

(i) ft(x) exists for all x ∈ R and ft(δt) = O(1) uniformly.

(ii) For d > 0 and u0 > 0,

Ft(u+ δt)− Ft(δt) = ft(δt)u+O(ud+1) uniformly for |u| ≤ u0.

(iii) For any n ∈ N, there exists a matrix H such that Hn ≥ H.

(iv) For any n ∈ N, there exists a matrix V such that Vn ≥ V .

(v) {X(t)} is an m-dependence process or a linear process of the form
∑∞

l=−∞

ϕ(l)e(t − l), where {et} is an i.i.d. random sequence with E|e(t)| < ∞
and {ϕ(l)} is an absolutely summable deterministic sequence such that∑

|l|>nr ϕ(l) = o(n−1) as n→ ∞ for some constant r ∈ [0, 1/4).

Quantile regression lemma is given as follows.

Lemma 3.2.2 (Li (2012), Quantile regression lemma). Let {X(t)} be a random

process given by (3.2.5). Suppose Assumption 3.2.1 holds. Then we obtain

√
n(β̂n − β0)

L−→ AN (µn,Σn),
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where

µn = H−1
n hn, hn = n−1/2

n∑
t=1

(τ − Ft(δt))ct,

Σn = H−1
n VnH

−1
n .

To see the result is broad enough, we give an example, which is also given in

Li (2008).

Example 1. Suppose the model is

X(t) = cTt β0 + ϵ(t), ϵ(t) ∼ i.i.d. (0, σ2),

β̂n is given by (3.2.6) and the design matrix is Dn = n−1
∑n

t=1 ctc
T
t . Under

Assumption 3.2.1,
√
n(β̂n − β0)

L−→ AN (0,Σn),

where Σn = τ(1− τ)f(0)−2Dn.

Proof. From δt = 0, Hn = f(0)Dn and Vn = τ(1 − τ)Dn, the conclusion holds.

To derive the distribution of the quantile periodogram Qn(λj) by Lemma

3.2.2, the stochastic process {X(t)} involved has to be stationary in level-crossings.

That is to say, if we consider the binary level-crossing process {1(X(t)) ≤ ξ},
then it must be stationary in the sense that there exists a sequence {γ(k)} such

that

γ(t− s) = P{(X(t)− λ)(X(s)− λ) < 0} for all s, t ∈ Z. (3.2.7)

This assumption seems strong but it is not so. In fact, if the process is strict

stationary, then (3.2.7) always holds.

Under this setting, we suppose the level-crossing process {1(X(t) < λ)} is

stationary with mean τ and autocovariance τ(1 − τ) − (1/2)γ(k). Correspond-

ing to this level-crossing process {(1(X(t) < λ) − τ)/
√
τ(1− τ)}, we have the

quantile spectral density defined by

S(ω) =
∞∑

k=−∞

{
1− 1

2τ(1− τ)
γ(k)

}
exp(ikω). (3.2.8)

We impose the following assumptions which are sufficient for Assumption

3.2.1.

Assumption 3.2.3. For the process {X(t); t ∈ Z}, we suppose



3.2 Quantile Periodogram 28

(i) Ft(ξ) = τ and ft(ξ) = ι > 0 for all t ∈ Z.

(ii) For d > 0 and u0 > 0,

Ft(u+ δ)− Ft(δ) = ft(δ)u+O(ud+1) uniformly for |u| ≤ u0.

(iii) {X(t)} is stationary in ξ-level crossings and the quantile spectral density

is well defined, that is,

∞∑
k=−∞

∣∣∣1− 1

2τ(1− τ)
γ(k)

∣∣∣ <∞.

(iv) {X(t)} is an m-dependence process or a linear process of the form
∑∞

l=−∞

ϕ(l)e(t − l), where {et} is an i.i.d. random sequence with E|e(t)| < ∞
and {ϕ(l)} is an absolutely summable deterministic sequence such that∑

|l|>nr ϕ(l) = o(n−1) as n→ ∞ for some constant r ∈ [0, 1/4).

Theorem 3.2.4 (Li (2012)). Let {X(t)} satisfy Assumption 3.2.3. If the quan-

tile periodogram is given by (3.2.4), then as n→ ∞, the joint distribution of the

quantile periodogram has asymptotics

(Qn(λ1), Qn(λ2), . . . , Qn(λl)
L−→ 1

2

τ(1− τ)

ι2

(
S(λ1), S(λ2), . . . , S(λl)

)
χ2
2,

where S(ω) is given by (3.2.8).

Proof. Suppose β̂n(j) is corresponding to the element ct(λj) in ct, where ct(λj) =

(cos(λj), sin(λj))
T . As a direct result of (3.2.3), we obtain that

n∑
t=1

eitλk =

n for k = 0,

0 otherwise.
(3.2.9)

From (3.2.9), it is not difficult to see that

n−1
n∑

t=1

ct(λj)ct(λk)
T =

1

2
δ(j, k)I2,

and by trigonometric formula

n−1

min(n,n+s)∑
t=max(1,1+s)

ct(λj)c(λk)
T
t−s =

1

2
δ(j, k)

(
cos(sλj) − sin(sλj)

sin(sλj) cos(sλj)

)
+ o(1).

In view of δt = ξ and Ft(ξ) = τ , we obtain

√
n(β̂n(j)− β0(j))

L−→ AN (0,Σn),
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where Σn is given by

Σn =
1

2

τ(1− τ)

ι2
S(λj)I2,

and Cov(
√
n(β̂n(j) − β0(j)),

√
n(β̂n(k) − β0(k))) = 0 if k ̸= j. Therefore, the

conclusion follows.

Remark 3.2.5. The problem with the quantile periodogram proposed by Li

(2008, 2012) is that if we use the quantile periodogram for hypothesis testing,

we have to estimate ι = ft(ξ). This estimation may lead a different asymptotic

distribution of the quantile periodogram.

3.3 Alternative Definition of Quantile Periodogram

To avoid the problem in Remark 3.2.5, Hagemann (2011) proposed another def-

inition of the quantile periodogram, which does not include the term of ft(ξ).

As what we mentioned before, the τ -th sample quantile can be obtained by

minimizing Koenker and Bassett’s check function, that is,

ξ̂n = min
x∈R

n∑
t=1

ρτ (X(t)− x),

where

ρτ (u) = u(τ − 1(u < 0)).

The score function of Koenker and Bassett’s check function ψτ (x) is defined by

ψτ (x) = τ − 1(u < 0).

With this notation, the alternative definition of the quantile periodogram is given

by

Qn(λj) =
1

2π
|n−1/2

n∑
t=1

ψ(t; ξ̂n)e
itλj |2, (3.3.1)

where ψ(t; ξ̂n) = ψτ (X(t)− ξ̂n). This definition is corresponding to Li’s quantile

periodogram without the multiplier ι, which is seen from the stochastic equicon-

tinuity in Section 3.5.

Remark 3.3.1. As (3.6.1) below holds, the definition of the quantile peri-

odogram

Sn(λ) =
1

2πn

∣∣∣ n∑
t=1

g(t; θ̂n)e
itλ
∣∣∣2
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is equivalent to (3.2.4) without the constant ι. This trait leads the definition of

the quantile periodogram introduced by Hagemann (2011) to an easy handling

in practice.

3.4 Generalized Periodogram

From the idea of the definition in (3.3.1), we give an extension of periodogram

via the subgradient function g(θ) of M-estimators. Suppose we have to minimize

a convex function ρ(θ) and g(θ) is the subgradient function of ρ(θ). Here we

only suppose the parameter θ is 1-dimension and g(θ) is a real-valued function.

Remark 3.4.1. If we suppose g(θ) is p-dimension, then asymptotic distribution

of the generalized periodogram is well known to be a complex Wishart distribu-

tion in general. The story goes beyond this dissertation.

To be clear, suppose ρ(X(t); θ) is denoted by ρ(t; θ) and the estimate θ̂n is

defined by

θ̂n = argmin
θ∈Θ

1

n

n∑
t=1

ρ(t; θ).

Define the generalized periodogram by

Sn(λ) =
1

2πn

∣∣∣ n∑
t=1

g(t; θ̂n)e
itλ
∣∣∣2, (3.4.1)

where g(t; θ) is a subgradient function of the corresponding objective function

ρ(t; θ).

As what we mentioned in Section 3.1, we have to suppose a serial intrin-

sic properties for the time series for estimation. That is to say, the process

{X(t); t ∈ Z} is stationary in the sense of a parameter θ. The serial intrinsic

properties may be independent identically distributed, strict stationary, second

order stationary, ξ-level crossing or even zero-crossing. That is to say, we can de-

fine the subgradient function g to correspond to the property and the assumption

of stationarity guarantees that there exist serial functions γg(j) such that

γg(s− t) = Eg(s; θ0)g(t; θ
0) for all s, t ∈ Z. (3.4.2)

The serial function γg(j) then can be Fourier transformed and the spectral den-

sity function is

fg(λ) =
1

2π

∑
j∈Z

γg(j)e
ijλ.

Assumption 3.4.2.
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(i) ρ(θ) is convex with respect to θ.

(ii) Q(θ) is well defined.

(iii) θ0 satisfying (2.3.1) exists and is unique.

(iv) For α in a neighborhood of θ0,

∞∑
k=1

E|
(
g(1;α)− g(1; θ0)

)(
g(k;α)− g(k; θ0)

)
| <∞.

(v) Q(θ) is twice differentiable at θ0 and ∇2Q(θ0) is positive definite.

(vi) {X(t)} is stationary in the sense of (3.4.2) and

∑
j∈Z

|γg(j)| <∞.

(vii) The subgradient function g(·) is Lipschitz continuous in the argument of

the function of random variables X(t).

Theorem 3.4.3. Let {X(t)} satisfy Assumption 3.4.2. If the generalized pe-

riodogram is given by (3.4.1), then as n → ∞, the joint distribution of the

generalized periodograms

(
Sn(λ1), Sn(λ2), . . . , Sn(λl)

)
, |l| ≤ n− 1,

asymptotically converge to independent exponential distributed random variables

with mean fg(λ).

We will skip the proof of Theorem 3.4.3 for a while, since we need a concept

called “stochastic equicontinuity” for the proof. Before looking at the concept,

we leave a remark for Theorem 3.4.3.

Although the convergence of (3.4.1) is shown to convergence to an exponential

distributed random variable with mean fg(λ), it does not mean the generalized

periodogram is a consistent statistic for spectral density. In general, we have to

smooth the periodogram to obtain an consistent nonparametric estimator of the

spectral density. As for the smoothing, we will mention it in Chapter 5.

3.5 Stochastic Equicontinuity

To show the equivalence of the definition of the quantile periodogram proposed

by Li and Hagemann, and further Theorem 3.4.3, we have to show the stochastic

equicontinuity for the general subgradient function g by bracketing conditions.
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Suppose we bracket the subgradient function g by gi, (i = 1, . . . , n). The class

for the parametric function g is defined by

F = {g; sup
x
|g(x)| <∞},

and the bracketing number N(δ) for the class equals the smallest value of N for

which it holds that for any g ∈ F , there exists an i ∈ {1, 2, . . . , N} such that

|g − gi| ≤ bi,

where ρ(bi) ≤ δ for any i = 1, . . . , N . The distance function ρ is generally defined

by L2-norm, that is,

ρ(g) = sup
i=1,...,n

∥g(Xi)∥2.

The argument of empirical process is usually done with the assumption that

random variables are i.i.d. or at most, in dependent case, strongly mixing. See

(Andrews and Pollard (1994)). For the context of time series model, we have

to impose another condition, the geometric moment contraction property, for

the process, although the condition is not stronger nor weaker than the strongly

mixing condition. The geometric moment contraction is first given in Hsing and

Wu (2004). Before introducing the condition, we first suppose the time series

{X(t); t = 1, . . . , n} is generated by a system,

X(i) = F (. . . , ϵ(i− 1), ϵ(i)),

where ϵ(i) are i.i.d. random variables. For this process, we make a copy of the

process by

X∗(i) = F (. . . , ϵ∗(−1), ϵ∗(0), . . . , ϵ(i)),

where ϵ∗(k) is a copy of ϵ(k). The geometric moment contraction condition is

given by

∥X(n)−X∗(n)∥α = O(r(α)n)

for some α > 0 and 0 < r(α) < 1. As mentioned in Hagemann (2014), the

models of stationary ARMA, ARCH, GARCH, and so on satisfy this condition.

Assumption 3.5.1. We impose two assumptions to the function class F :

(i) For the subgradient function g and bi (i = 1, . . . , n), the Lipschitz continuity

holds, that is, for some p, q > 0 and L > 0,

∥g(X(n))− g(X∗(n))∥p ≤ L∥X(n)−X(n)∗∥q,

∥bk(X(n))− bk(X
∗(n))∥p ≤ L∥X(n)−X(n)∗∥q.
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(ii) The bracketing number N(δ) satisfies∫ 1

0
x−γ/(2+γ)N(x,F)1/qdx <∞

for some γ > 0 and an even number q ≥ 2.

Under Assumption 3.5.1, Hagemann (2014) gave a crucial result for the

stochastic equicontinuity for the subgradient function g. From the problem of

measurablily, suppose P ∗ and E∗ are outer probability and outer expectation.

νn represents the empirical process, i.e.,

νng(·) := n−1/2
n∑

t=1

(
g(t; ·)− Eg(t; ·)

)
.

Lemma 3.5.2 (Hagemann (2014)). Suppose Assumption 3.5.1 holds. Then we

obtain that for any ϵ > 0, there exists a δ > 0 such that

lim sup
n→∞

E∗
(

sup
f,g∈F ,ρ(f−g)<δ

|νn(f − g)|
)2

< ϵ.

Proof. See Hagemann (2014) and Andrews and Pollard (1994).

3.6 Proof of Theorem 3.4.3

We show Theorem 3.4.3 in this section. Before the proof, we first give a remark

relating the method used in the proof.

Remark 3.6.1. As mentioned in Andrews and Pollard (1994), the function ρ

defined in the proof can be seemed as a new distance on Θ, that is, ρ : Θ → R.
Note that the estimator θ̂n is then plugged into the distance later on.

Proof. To treat the plugin type statistics, we approximate (3.4.1) by the statistics

evaluated at the true value θ0. In fact, for k = 1, . . . , l,

Sn(λk) =
1

2π

∣∣∣νn{g(θ̂n)− g(θ0)}e−itλk + νng(θ0)e
−itλk

∣∣∣2.
What we have to show is that

(i) the first term satisfies

νn{g(θ̂n)− g(θ0)} →p 0, (3.6.1)

(ii) and the second term satisfies

1

2π

∣∣∣νng(θ0)e−itλk

∣∣∣2 L−→ Ek. (3.6.2)
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Assertion (3.6.1) follows the stochastic equicontinuity. Actually, suppose the

maximal diameter of Θ is δ and set the grid on Θ where ρ(·) is set to be L1-

norm. As the parameter θ is 1-dimension, suppose the grid is defined by

θ0 − δ = θ1 < · · · < θN+1 = θ0 + δ.

Suppose the functions bi is defined by

bi = g(θi+1)− g(θi), i = 1, . . . , N.

Then it is easy to see that

ρ(bi) = ∥g(θi+1)− g(θi)∥ ≤ {ER(θ∗)}(θi+1 − θi), θi+1 ≤ θ∗ ≤ θi,

where R(θ∗) > 0 almost surely from Assumption 3.4.2 (v). Define L = ER(θ∗).

In view of L > 0, we obtain the Lipschitz property for ρ(bi) and consequently

the bracketing number N(δ) is O(δ−1) from Andrews and Pollard (1994). If we

set q = 2, then Assumption 3.5.1 (ii) is satisfied. Assumption 3.5.1 is guaranteed

by Assumption 3.4.2 (vii). Therefore we obtain

lim sup
n→∞

E∗
(

sup
f,g∈F ,ρ(f−g)<δ

|νn(f − g)|
)2

< ϵ. (3.6.3)

Also note that under Assumption 3.4.2 (i) - (iv), we have

θ̂n
P−→ θ0,

and therefore by continuous mapping theorem,

ρ(g(θ̂n)− g(θ0))
P−→ 0.

Consequently, for any η > 0, δ > 0 and ϵ1 > 0,

P (|νn{g(θ̂n)− g(θ0)}| > η) < P (|νn{g(θ̂n)− g(θ0)}| > η, ρ(g(θ̂n)− g(θ0)) < δ) + ϵ1

≤ P ∗
(

sup
g∈F ,ρ(g−g(θ0)))<δ

|νn(g(θ̂n)− g(θ0))| > η
)

≤ η−2E∗
(

sup
g∈F ,ρ(g−g(θ0)))<δ

|νn(g(θ̂n)− g(θ0))|
)

According to (3.6.3), we obtain

lim sup
n→∞

P (|νn{g(θ̂n)− g(θ0)}| > η) < ϵ.



3.6 Proof of Theorem 3.4.3 35

For proof of the second assertion (3.6.2), note that

n−1/2
n∑

t=1

gt(θ0) cos(tλk), n
−1/2

n∑
t=1

gt(θ0) sin(tλk)

are both asymptotically uncorrelated normal and accordingly, (3.6.2) holds.



Chapter 4

Parameter Estimation based

on Minimum Contrast

Estimators

4.1 Introduction

In this chapter, we are interested in parameter estimation by an estimation pro-

cedure in frequency domain. The concept of the spectral density function for

a stationary linear process has a long history. Whittle (1952) systematically

investigated the parameter estimation by the means of the spectral density for

the first time after he found that it was difficult to derive the inverse matrix of

parametrized variance matrix of Gaussian stationary process explicitely. He pro-

posed the method to approximate the matrix by the spectral density and next

estimate the parameters in the spectral density. In the case, Whittle suggested

minimizing the functional
∫ π
−π In,X(ω)/fθ(ω)dω for the Gaussian stationary pro-

cess {X(t); t ∈ Z}.

The method has been generalized to be a minimization problem of a certain

criterion (or disparity measure) D(fθ, ĝn) in Taniguchi (1979). Here, the non-

parametric estimator ĝn is substituted for the periodogram In,X(ω) because of

non-consistency in the case of nonlinear integral functional of g(ω) in the crite-

rion. The approach minimizing criterion D between the parametrized spectral

density and the nonparametric estimator is called minimum contrast estimation.

The asymptotic properties of the approach for time series case have been consid-

ered for a long time. Taniguchi (1981a) proposed D(fθ, ĝn) =
∫ π
−π[Φ(fθ(ω))

2 −
2Φ(fθ(ω))Φ(ĝn(ω))]dω as the disparity measure between fθ(ω) and ĝn(ω) with a

bijective function Φ(·), and showed the asymptotic properties of the estimator.

As another direction, Taniguchi (1987) proposedD(fθ, ĝn) =
∫ π
−πK(fθ(ω)/ĝn(ω))

36
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dω as the disparity measure with a sufficiently smooth contrast function K(·)
whose minima exists uniquely at 1, and showed the asymptotic normality based

on the contrast function K(·).

We mainly focus on the minimum contrast estimators based on the exotic

disparity. The disparity includes the integration functional form of prediction

error and interpolation error up to some constant multiples. For consistency,

there is another functional contained in the disparity for adjustment. In chapter

4, we show that the estimator is consistent under some appropriate conditions.

The estimator also has some good properties like asymptotic normality and

robustness against the fourth order cumulant. However, only the case α = −1

leads to the efficient result, that is, the asymptotic variance of the estimation

is the inverse of fisher information in time series analysis. We will give some

comments on this method.

Chapter 4 is organized as follows. We review all the ideas for parameter

estimation based on minimum contrast estimators as historical remarks, and

investigate the properties of the exotic disparity, which is proposed in this dis-

sertation in Section 4.2. In Section 4.3, we define the estimator based on the

disparity and develop the asymptotic theory based on the exotic disparity for

the linear process. The robustness and efficiency of the estimator are given in

Section 4.4. The numerical results for the estimators based on the exotic dis-

parity are given in Section 4.5. The notations and symbols used in Chapter 4

are listed in the following: the constants ϵ, δ and C denote some real numbers

which vary from context; ∂i denote the differentiation with respect to ith ele-

ment of θ = (θ1, . . . , θp); Aj and Aij denote the jth and the (i, j)th element of

corresponding vector and matrix; cum(X1, . . . , Xn) denotes the cumulant of the

random variables {X1, . . . , Xn}; 1(·) denotes the indicator function; e denotes

the Napier’s constant; B(t) denotes the σ-field generated by the uncorrelated

process {ϵ(s)}ts=−∞; the L2-norm ∥f∥2 is defined by
∫ π
−π|f(ω)|

2dω; Correspond-

ingly, we say fn
L2

−→ f if ∥gn − g∥2 → 0 as n → ∞;
P−→ and

L−→ denote the

convergence in probability and the convergence in law, respectively.

4.2 Classification of Disparity Measure

Suppose {Xt; t ∈ Z} is a stationary process with mean zero, which is generated

by

X(t) =

∞∑
j=0

G(j)ϵ(t− j), t ∈ Z,



4.2 Classification of Disparity Measure 38

where Eϵ(t) = 0 and Eϵ(s)ϵ(t) = δ(s, t)σ2 with σ2 > 0. Furthermore, suppose

that {ϵ(t)} is fourth order stationary, and Qϵ(t1, t2, t3) is the joint fourth order

cumulant of ϵ(t), ϵ(t+ t1), ϵ(t+ t2), ϵ(t+ t3).

Let F denote the family of all spectral densities with respect to the Lebesgue

measure on [−π, π]. More specifically, we define F as

F =

g : g(ω) =
σ2

2π

∣∣∣ ∞∑
j=0

G(j)e−ijω
∣∣∣2
 .

Not so strongly, we suppose the following Assumption 4.2.1.

Assumption 4.2.1. For all |z| ≤ 1, there exist C <∞ and δ > 0 such that

(i)
∑∞

j=0(1 + j2)|G(j)| ≤ C,

(ii)
∣∣∣∑∞

j=0G(j)z
j
∣∣∣ ≥ δ,

(iii)
∑∞

t1,t2,t3=−∞|Qϵ(t1, t2, t3)| <∞.

The absolute summability of Qϵ(t1, t2, t3) guarantee the existence of a fourth-

order spectral density Q̃ϵ(ω1, ω2, ω3) such that

Q̃ϵ(ω1, ω2, ω3) =
( 1

2π

)3 ∞∑
t1,t2,t3=−∞

Qϵ(t1, t2, t3)e
−i(ω1t1+ω2t2+ω3t3).

The parametric family of the spectral densities with respect to F is given by

F(Θ) = {fθ(ω) ∈ F ;θ ∈ Θ ⊂ Rp}.

A functional T on all spectral densities F is defined by

D(fT (g), g) = min
t∈Θ

D(ft, g), for every g ∈ F .

For g(ω), we suppose ĝn(ω) is a consistent estimator for it. It is always possible to

construct a consistent estimator of Φ(g(ω)) if Φ(·) is known under some regularity

conditions. See Taniguchi (1980).

4.2.1 Location disparity

First, we give the well-known location disparity defined in Taniguchi (1981a).

The criterion is given by

Dl(fθ, ĝn) =

∫ π

−π
Φ(fθ(ω))

2 − 2Φ(fθ(ω))Φ(ĝn(ω))dω.

For example, the appropriate bijective function Φ(·) can be chose as



4.2 Classification of Disparity Measure 39

(i) Φ(x) = log x;

(ii) Φ(x) = 1.

The first choice of the function Φ(·) is based on the exponential model, given in

Bloomfield (1973). The motivation of the idea is that the discrete periodogram

In,X(λk) for every different λk is asymptotically exponential distributed. This

is what we have seen in Chapter 3. The second choice, the best choice in the

sense of asymptotic efficiency, is given in Theorem 4 in Taniguchi (1981a). The

disparity is also directly corresponding to the scale disparity given below.

4.2.2 Scale disparity

Next, we give another generalization of criterion, scale disparity, which is first

studied in Taniguchi (1987). The discussion on the higher order asymptotics of

the disparity is given in Taniguchi et al. (2003). The criterion is given by

Ds(fθ, ĝn) =

∫ π

−π
K(fθ(ω)/ĝn(ω))dω,

whereK is sufficiently smooth with its minimum at 1. Without loss of generality,

we also can consider some function K̃ that

K̃
(fθ(ω)
ĝn(ω)

− 1
)
= K(fθ(ω)/ĝn(ω)),

where the minima of K̃ is 0. The examples of K are

(i) K(x) = log x+ 1/x;

(ii) K(x) = − log x+ x;

(iii) K(x) = (log x)2;

(iv) K(x) = (xα − 1)2, α ̸= 0;

(v) K(x) = x log x− x;

(vi) K(x) = log{(1− α) + αx} − α log x, α ∈ (0, 1).

The scale disparity, in fact, is much broad in concept. The choice (i) and (iii)

are considered in the location case. The choice (vi) is given in Albrecht (1984)

as an α-entropy criterion for a Gaussian process. The case is robust with respect

to the peak, which is discussed in Zhang and Taniguchi (1995).
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4.2.3 Exotic disparity

In this chapter, we mainly focus on the new disparity, called exotic disparity in

the context, and look into the asymptotic properties of the criterion. For α and

β ∈ R, the exotic disparity is given by

De(fθ, In,X) =

∫ π

−π
a(θ)fθ(ω)

αIn,X(ω)dω, α ̸= 0, (4.2.1)

where a(θ) is given by

a(θ) =
(∫ π

−π
fθ(ω)

α+1dω
)β
.

This disparity is not included in either location disparity or scale disparity since

the parametrized spectral density and the true density would not be homogenous

in most cases. However, the definition of the disparity is motivated by the

following two equivalent examples up to a constant multiple:

(i) the Whittle disparity is given when α = −1;

(ii) the error based on interpolation is given when α = −2 and β = −2.

Without confusion, we only write D(·, ·) for De(·, ·) in the following.

The formulation of the disparity does not guarantee any fundamental prop-

erty for it. At first, we have to consider the problem of definition of the functional

T (g) for the disparity. From now on, we suppose fθ is twice continuously differ-

entiable with respect to θ and simplify the notation for differentiation as follows:

Let ∂i denotes ∂/∂θi,

A1(θ) =

∫ π

−π
fα+1
θ (λ)dλ,

A2(θ)i =

∫ π

−π
fαθ (λ)∂ifθ(λ)dλ,

A3(θ)ij =

∫ π

−π
fα−1
θ (λ)∂ifθ(λ)∂jfθ(λ)dλ,

B1(θ)i = fα−1
θ (ω)∂ifθ(ω),

B2(θ) = fαθ (ω),

C1(θ) = β

(∫ π

−π
fα+1
θ (λ)dλ

)β−1

.

We give two properties for reference hereafter. Before looking at the first prop-

erty, we review Kolmogorov’s Formula:
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Lemma 4.2.2 (Kolmogorov’s Formula). The one step mean square prediction

error of the stationary process {Xt} is

σ2 = 2π exp
{ 1

2π

∫ π

−π
log f(ω)dω

}
.

If the parameter θ is innovation free, then for all i = 1, . . . , p,

∂i

∫ π

−π
log fθ(ω)dω = 0.

The first property is about the information of the extreme value of the exotic

disparity.

Lemma 4.2.3. For the exotic disparity with either the case of

(i) α ̸= −1 and β = − α
α+1 or

(ii) α = −1 and θ is innovation free,

it holds that

∂iD(fθ, fθ0)

∣∣∣∣∣
θ=θ0

= 0, for all 1 ≤ i ≤ p.

Proof. It is easy to see that if α ̸= −1, then

∂iD(fθ, fθ0)

∣∣∣∣∣
θ=θ0

= (α+ 1)C1(θ
0)A1(θ

0)A2(θ
0)i + β−1αC1(θ

0)A1(θ
0)A2(θ

0)i.

(4.2.2)

The conclusion follows β = − α
α+1 . If α = −1, then the result is just an extension

of Kolmogorov’s formula.

To see next property, we need Hölder’s inequality for p > 0 (p ̸= 1). Suppose

p′ satisfy
1

p
+

1

p′
= 1.

Lemma 4.2.4 (Hewitt and Stromberg (1975)). Suppose f ∈ Lp, g ∈ Lp′.

(i) If p > 1, then

∥fg∥1 ≤ ∥f∥p∥g∥p′ .

(ii) If 0 < p < 1 and further suppose f ∈ L+
p and g ∈ L+

p′, then

∥fg∥1 ≥ ∥f∥p∥g∥p′ .

The equality holds if and only if

|f |p = C|g|p′ , a.e.
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Remark 4.2.5. Note that if 0 < p < 1, then p′ < 0 and vice versa. That is to

say, (ii) is equivalent to

(ii)’ if p < 0 and f ∈ L+
p and g ∈ L+

p′ , then

∥fg∥1 ≥ ∥f∥p∥g∥p′ .

Assumption 4.2.6.

(i) α = −1 and θ is innovation free or β = − α
α+1 (α ̸= −1).

(ii) Θ is a compact subset of Rp.

(iii) If θ1 ̸= θ2, then fθ1 ̸= fθ2 on a set of positive Lebesgue measure.

The second property is that θ0 can be the extreme value for the exotic

disparity in the regular situation, even if the fitted spectral density fθ is not

differentiable.

Lemma 4.2.7. Under Assumption 4.2.6, we have the following results:

(i) If α > 0, then θ0 maximize the exotic disparity D(fθ, fθ0) for any fθ0 ∈
F(Θ).

(ii) If α < 0, then θ0 minimize the exotic disparity D(fθ, fθ0) for any fθ0 ∈
F(Θ).

Proof. First, suppose α > 0. The exotic disparity (4.2.6) can be rewritten by

D(fθ, fθ0) =

∫ π
−π fθ(ω)

αfθ0(ω)dω

(
∫ π
−π fθ(ω)

α+1dω)
α

α+1

.

From Lemma 4.2.4, the numerator then satisfies∫ π

−π
fθ(ω)

αfθ0(ω)dω ≤
(∫ π

−π
{fθ(ω)α}

α+1
α dω

) α
α+1
(∫ π

−π
fθ0(ω)α+1dω

) 1
α+1

=
(∫ π

−π
fθ(ω)

α+1dω
) α

α+1
(∫ π

−π
fθ0(ω)α+1dω

) 1
α+1

.

Therefore,

D(fθ, fθ0) ≤
(∫ π

−π
fθ0(ω)α+1dω

) 1
α+1

.

The equality holds only when fθ = fθ0 almost everywhere. From Assumptions

4.2.6 (ii) and (iii), the conclusion holds.

On the other hand, if α < 0, then there are three cases (a) −1 < α < 0, (b)

α < −1 and (c) α = −1 must be considered. However, it is easy to see that both



4.2 Classification of Disparity Measure 43

first two cases are corresponding to the case (ii) and (ii)’ in Hölder’s inequality

since if −1 < α < 0 then (α+ 1)/α < 0 and if α < −1 then 0 < (α+ 1)/α < 1.

As a result, we obtain

D(fθ, fθ0) ≥
(∫ π

−π
fθ0(ω)α+1dω

) 1
α+1

,

with a minima from Assumption 4.2.6. For the case (c), the disparity is corre-

sponding to the predictor error. There is a lower bound for the disparity. (See

Proposition 10.8.1 in Brockwell and Davis (1991).)

Before considering the asymptotic properties of the disparity, we finally give

a stronger result with stronger assumptions, supposing that the fitted spectral

density is twice continuously differentiable, to understand the exotic disparity

well. To see the result, we have to first look at the following Lemma, which is

a generalization of the Cauchy-Bunyakovsky inequality, first given in Grenander

and Rosenblatt (1957) in the context of time series analysis and then the paper

by Kholevo (1969) later on.

Lemma 4.2.8 (Grenander and Rosenblatt (1957), Kholevo (1969)). Let A(ω),

B(ω) be r × s matrix-valued functions, and g(ω) a positive function on ω ∈
[−π, π]. If {∫ π

−π
B(ω)B(ω)T g(ω)−1dω

}−1

exists, the following inequality∫ π

−π
A(ω)A(ω)T g(ω)dω

≥
{∫ π

−π
A(ω)B(ω)Tdω

}{∫ π

−π
B(ω)B(ω)T g(ω)−1dω

}−1{∫ π

−π
A(ω)B(ω)Tdω

}T

(4.2.3)

holds. In (4.2.3), the equality holds if and only if there exists a constant matrix

C such that

g(ω)A(ω) + CB(ω) = O, a.e. ω ∈ [−π, π]. (4.2.4)

Lemma 4.2.9. Suppose g ∈ F(Θ), that is, the spectral density g can be rep-

resented by p parameters. Under Assumption 4.2.6, if α > 0, then the exotic

disparity D(fθ, g) is convex upward with respect to θ. Inversely, if α < 0, then

the exotic disparity D(fθ, g) is convex downward with respect to θ.

Proof. Suppose α ̸= −1 and β = − α
α+1 . Then

∂iD(fθ, g) = (α+1)C1(θ)
{
A1(θ)

∫ π

−π
B1(θ)ig(ω)dω−A2(θ)

∫ π

−π
B2(θ)ig(ω)dω

}
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If g = fθ, then it is easy to see that ∂iD(fθ, g) = 0 for any i = 1, . . . , p.

Considering twice derivative of D(fθ, g), we have

∂i∂jD(fθ, g) = (α+ 1)C1(θ)
(
A1(θ)A3(θ)ij −A2(θ)iA2(θ)j

)
if g = fθ. Regarding A(ω), B(ω), g(ω) in Lemma 4.2.8 as

A(ω) = f
α/2
θ (ω)

B(ω) = f
α/2
θ (ω)∂ifθ(ω)

g(ω) = fθ(ω),

Then we can see that the matrix A1(θ)A3(θ)ij−A2(θ)iA2(θ)j is positive definite.

Since (α+1)β = −α, the conclusion of the convexity of the exotic disparity holds.

The convexity in the case of α = −1 is also easy to show.

Returning to Lemma 4.2.7, it is shown that the true value is a maxima or a

minima θ ∈ Θ for the criterion D(fθ, g). The possibility of being a maxima or a

minima is symmetric with respect to α = 0. To keep uniformity of the context,

we suppose α < 0. That is, the functional T has the same definition as

D(fT (g), g) = min
t∈Θ

D(ft, g), for every g ∈ F . (4.2.5)

We also suppose if g ∈ F(Θ),

θ0 = T (g). (4.2.6)

4.3 Estimation Theory Based on Exotic Disparity

In this section, we investigate asymptotic behavior of the parameter estimation

based on exotic disparity. The result directly follows the well-known asymptotic

properties of smoothed periodogram. For simplicity, we suppose p = 1, that is,

θ ∈ Θ ⊂ R from now on. The case of general p is only a technical problem.

α < 0 is also assumed in this section.

For the linear process {X(t); t ∈ Z}, In,X(ω) denotes the periodogram con-

structed from a partial realization {X(1), . . . , X(n)}, that is,

In,X(ω) =
1

2πn

∣∣∣ n∑
t=1

X(t)eitω
∣∣∣2, −π ≤ ω ≤ π.

For simplicity, we sometimes use

θ̂n = argmin
θ∈Θ

D(fθ, In,X) (4.3.1)
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Theorem 4.3.1. Under Assumptions 4.2.1 and 4.2.6, we have the following

results.

(i) For every g ∈ F , there exists a value T (g) ∈ Θ satisfying (4.2.5).

(ii) If T (g) is unique and if gn
L2

−→ g, then T (gn) → T (g) as n→ ∞.

(iii) T (fθ) = θ for every θ ∈ Θ.

Proof. (i) Define h(θ) by h(θ) = D(fθ, g). If the continuity of h(θ) in θ ∈ Θ

is shown, then the existence of T (g) follows the compactness of Θ. From

Assumption 4.2.1 and Lemma 4.2.4,

h(θ) ≤
(∫ π

−π
g(ω)α+1dω

) 1
α+1 ≤ C.

By Lebesgue’s dominated convergence theorem,

|h(θn)− h(θ)| ≤
∣∣∣∫ π

−π
(a(θn)fθn(ω)

α − a(θ)fθ(ω)
α)g(ω)dω

∣∣∣→ 0

for any convergence sequence {θn ∈ Θ; θn → θ}, which the continuity of

h(θ) follows.

(ii) Similarly, suppose hn(θ) = D(fθ, gn). Then

lim
n→∞

sup
θ∈Θ

|hn(θ)− h(θ)| = lim
n→∞

sup
θ∈Θ

∣∣∣∫ π

−π
(a(θ)fθ(ω)

α)(gn(ω)− g(ω))dω
∣∣∣

≤ lim
n→∞

sup
θ∈Θ

∣∣∣∫ π

−π
(a(θ)fθ(ω)

α)2dω

×
∫ π

−π
(gn(ω)− g(ω))2dω

∣∣∣1/2
≤ C lim

n→∞
sup
θ∈Θ

∣∣∣∫ π

−π
(gn(ω)− g(ω))2dω

∣∣∣1/2
= 0,

by gn
L2

−→ g. As a result, we obtain

|hn(T (gn))− h(T (g))| → 0,

|hn(T (gn))− h(T (gn))| → 0,

and therefore

h(T (gn)) → h(T (g)).

The conclusion follows the uniqueness of T (g).

(iii) This is equivalent to Lemma 4.2.7 (ii), which we have shown before.
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Assumption 4.3.2. The spectral density fθ(ω) is three times continuously dif-

ferentiable with respect to θ and the second derivative ∂2

∂θ2
fθ(ω) is continuous in

ω.

Theorem 4.3.3. Suppose that T (g) exists uniquely and lies in Int(Θ). For every

spectral density sequence {gn} satisfying gn
L2

−→ g, we have

T (gn) = T (g)−
∫ π

−π
ρ(ω)(gn(ω)− g(ω))dω,

where

ρ(ω) =
(
A1(θ

0)A3(θ
0)−A2(θ

0)2
)−1(

A1(θ
0)B1(θ

0)−A2(θ
0)B2(θ

0)
)
.

Proof. In view of T (g) ∈ Int(Θ), we have

D(fθ, gn)

∣∣∣∣∣
θ=T (gn)

= 0,

D(fθ, g)

∣∣∣∣∣
θ=T (g)

= 0.

Then there exists a θ∗ such that T (g) ≤ θ∗ ≤ T (gn) and

T (gn)− T (g) =
{
(α+ 1)C1(θ)

(
A1(θ)A3(θ)ij −A2(θ)iA2(θ)j

)∣∣∣∣∣
θ=θ∗

}−1

∫ π

−π
A1(θ

0)B1(θ
0)−A2(θ

0)B2(θ
0)(gn − g)dω.

From the fact that

(α+ 1)C1(θ)
(
A1(θ)A3(θ)ij −A2(θ)iA2(θ)j

)∣∣∣∣∣
θ=θ∗

−
(
(α+ 1)C1(θ

0)(A1(θ
0)A3(θ

0)−A2(θ
0)2
)

is bounded by C|T (gn)− T (g)|, the conclusion follows.

To see asymptotic properties of the estimation based on the exotic disparity,

we first impose assumptions on innovation process for limit theorem of inte-

gration functional of periodogram. Assumption 4.3.4 is much weaker since the

conditions guarantee the approximation of martingale sequence for innovation

process based on martingale central limit theorem. Denote by B(t) the σ-field

generated by {ϵ(n);n ≤ t}.
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Assumption 4.3.4.

(i) For each nonnegative integer m and η1 > 0,

Var[E{ϵ(t)ϵ(t+m)|B(t− τ)} − δ(m, 0)σ2] = O(τ−2−η1)

uniformly in t.

(ii) For η2 > 0,

E|E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)|B(t1 − τ)} −E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)}| = O(τ−1−η2),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4.

(iii) For any η3 > 0 and for any integer L ≥ 0, there exists Bρ > 0 such that

E[T (n, s)21{T (n, s) > Bη3}] < η3

uniformly in n and s, where

T (n, s) = n−1/2
L∑

r=0

{ n∑
t=1

ϵ(t+ s)ϵ(t+ s+ r)− σ2δ(0, r)
}2

Lemma 4.3.5 (Hosoya and Taniguchi (1982), Taniguchi and Kakizawa (2000)).

Suppose ψ(ω) is a p×1 vector-valued symmetric continuous function on [−π, π].
Under Assumption 4.3.4, we have

(a) the consistency ∫ π

−π
ψ(ω)In,X(ω)dω

P−→
∫ π

−π
ψ(ω)fθ0(ω)dω,

(b) and asymptotic normality that

√
n

∫ π

−π
ψ(ω){In,X(ω)− fθ0(ω)}dω

L−→ N (0, V ),

where

V = 4π

∫ π

−π
ψ(ω)ψ(ω)T fθ0(ω)

2dω

+ 2π

∫∫ π

−π
ψ(ω1)ψ(ω2)

T Q̃X(−ω1, ω2,−ω2)dω1dω2.
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Theorem 4.3.6. Under Assumptions 4.2.1, 4.2.6, 4.3.2 and 4.3.4, if T (g) exists

uniquely in Int(Θ), then for the estimator θ̂n defined by (4.3.1), it holds that

(a) θ̂n
p−→ θ0,

(b)
√
n(θ̂n − θ0)

d−→ N (0, H(θ0)−1V (θ0)H(θ0)−1),

where

H(θ0) =
(∫ π

−π
fαθ (λ)∂fθ(λ)dλ

)2
−
∫ π

−π
fα+1
θ (λ)dλ

∫ π

−π
fα−1
θ (λ)

(
∂fθ(λ)

)2
dλ

∣∣∣∣∣
θ=θ0

,

V (θ0) =
[
4π

∫ π

−π

(
fαθ (ω)∂fθ(ω)

∫ π

−π
fα+1
θ (λ)dλ− fα+1

θ (ω)

∫ π

−π
fαθ (λ)∂fθ(λ)dλ

)2
dω

+ 2π

∫∫ π

−π

(
fα−1
θ (ω1)∂fθ(ω1)

∫ π

−π
fα+1
θ (λ)dλ− fαθ (ω1)

∫ π

−π
fαθ (λ)∂fθ(λ)dλ

)
×
(
fα−1
θ (ω2)∂fθ(ω2)

∫ π

−π
fα+1
θ (λ)dλ− fαθ (ω2)

∫ π

−π
fαθ (λ)∂fθ(λ)dλ

)
× Q̃X(−ω1, ω2,−ω2)dω1dω2

]∣∣∣∣∣
θ=θ0

.

Proof. In view of (4.3.1), it is equivalent to consider θ̂n satisfies

∂D(fθ, In,X)

∣∣∣∣∣
θ=θ̂n

= 0.

The result that θ̂n
P−→ θ0 follows that for any θ ∈ Θ compact.

∂D(fθ, In,X)
P−→ ∂D(fθ, fθ0),

which is guaranteed by Lemma 4.3.5 (a). Differentiating the disparity (4.2.6)

with respect to θ, then we have

∂D(fθ, In,X) = C1(θ)

∫ π

−π
(A1(θ)B1(θ)−A2(θ)B2(θ))In,X(ω)dω.

Note that ∂D(fθ, fθ0)

∣∣∣∣∣
θ=θ0

= 0. Asymptotic normality follows that by Lemma

4.3.5 (b),

∂D(fθ, In,X)

∣∣∣∣∣
θ=θ0

= C1(θ
0)

∫ π

−π

(
A1(θ

0)B1(θ
0)−A2(θ

0)B2(θ
0)
)

×
(
In,X(ω)− fθ0(ω)

)
dω

L−→ N
(
0, C1(θ

0)2V (θ0)
)
.
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Noting that ∂D(fθ, fθ0)

∣∣∣∣∣
θ=θ0

= 0 again, we see that

∣∣∣∂2D(fθ, In,X)− C1(θ)∂(

∫ π

−π
(A1(θ)B1(θ)−A2(θ)B2(θ))In,X(ω)dω)

∣∣∣∣∣
θ=θ0

∣∣∣ P−→ 0.

We also have∫ π

−π
B1(θ)fθ(ω)dω ∂A1(θ)−

∫ π

−π
A2(θ)fθ(ω)dω ∂B2(θ) =

(
A2(θ)

)2
∫ π

−π
A1(θ)fθ(ω)dω ∂B1(θ)−

∫ π

−π
B2(θ)fθ(ω)dω ∂A2(θ) = −A1(θ)A3(θ),

and therefore

C1(θ)∂(

∫ π

−π
(A1(θ)B1(θ)−A2(θ)B2(θ))In,X(ω)dω)

∣∣∣∣∣
θ=θ0

P−→ C1(θ
0)H(θ0).

As a result, we obtain

∂2D(fθ, In,X)

∣∣∣∣∣
θ=θ0

P−→ C1(θ
0)H(θ0).

Canceling C1(θ
0), the desirable result is obtained.

If we impose a simple but stronger assumption, asymptotic distribution of

θ̂n will be much easier. The assumption is given below.

Assumption 4.3.7. The fourth order cumulant of ϵ(t) satisfies

cum{ϵ(t1), ϵ(t2), ϵ(t3), ϵ(t4)} =

κ4 if t1 = t2 = t3 = t4,

0 otherwise.

Before simplifying the asymptotic distribution, we first give a result on the

fourth-order spectral density of the process {X(t)}.

Lemma 4.3.8 (Hosoya and Taniguchi (1982) Lemma A2.1). If
∑∞

j=0G(j)
2 <∞

and
∑∞

t1,t2,t3=−∞|Qϵ(t1, t2, t3)| ≤ ∞, then the process {X(t)} has a fourth-order

spectral density Q̃X(ω1, ω2, ω3) such that

Q̃X(ω1, ω2, ω3) = k(ω1 + ω2 + ω3)k(−ω1)k(−ω2)k(−ω3),

where k(ω) =
∑∞

j=0G(j)e
ijω.
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Corollary 4.3.9. Under Assumption 4.2.1,

Q̃X(−ω1, ω2,−ω2) = σ−4fθ0(ω1)fθ0(ω2).

Theorem 4.3.10. Suppose Assumptions 4.2.1, 4.2.6, 4.3.2 and 4.3.7 hold. If

g = fθ0, then asymptotic variance of
√
n(θ̂n−θ0) is given by H(θ0)−1Ṽ (θ0)H(θ0)−1,

where

Ṽ (θ0) =
[
4π

∫ π

−π

(
fαθ (ω)∂fθ(ω)

∫ π

−π
fα+1
θ (λ)dλ

− fα+1
θ (ω)

∫ π

−π
fαθ (λ)∂fθ(λ)dλ

)2
dω
]∣∣∣∣∣

θ=θ0

.

Proof. The result directly follows the equation (4.2.2), that is,

∂D(fθ, fθ0) = 0.

As a result, the last term in the asymptotic variance is 0.

4.4 Robustness and Efficiency of T (g)

4.4.1 Robustness of T (g)

First, we can see that the minimum contrast estimation based on exotic disparity

is robust against the fourth cumulant. If the process {X(t)} considered is 1-

dimension, then the property holds even if f(ω) ̸= fθ(ω) from Theorem 4.3.10.

Recently, the author found there has been a large amount of discussion on the

robustness of the minimum contrast estimation based on the exotic disparity

from different points of view. We do not plan to step into the robustness in the

paper. See Basu et al. (1998), Fujisawa and Eguchi (2008) and Kanamori and

Fujisawa (2014).

4.4.2 Efficiency of T (g)

In this section, we focus on the asymptotic variance of the estimators θ̂n gen-

erated by different α. It is well known in time series analysis that the Fisher

information matrix for Gaussian process is asymptotically given by

F(θ) =
1

4π

∫ π

−π
f−2
θ (ω)(∂fθ(ω))

2dω.
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The estimator θ̂n attaining the Cramer-Rao lower bound, that is, the inverse

matrix of Fisher information matrix F(θ)−1, is called asymptotically efficient.

The lower bound of the asymptotic variance is again, shown by Lemma 4.2.8.

Theorem 4.4.1. Suppose Assumptions 4.2.1, 4.2.6, 4.3.2 and 4.3.7 hold. The

inequality always holds that

H(θ0)−1Ṽ (θ0)H(θ0)−1 ≥ F(θ0)−1. (4.4.1)

The equality holds when α = −1 or the spectral density does not depend on ω.

Proof. Define

A(ω) = A1(θ
0)B1(θ

0)−A2(θ
0)B2(θ

0),

B(ω) = ∂fθ(ω)

∣∣∣∣∣
θ=θ0

,

g(ω) = f2θ (ω)

∣∣∣∣∣
θ=θ0

.

Then (4.4.1) holds from Lemma 4.2.8. According to (4.2.4), the equality holds

when∫ π

−π
fα+1
θ (λ)dλ fα+1

θ (ω)∂fθ(ω)−
∫ π

−π
fαθ (λ)∂fθ(λ)dλ f

α+2
θ (ω)−C∂fθ(ω)

∣∣∣∣∣
θ=θ0

= 0

(4.4.2)

with a constant c. Note that if α = −1, then the left hand side of (4.4.2) is

2π∂fθ(ω)−
∫ π

−π
f−1
θ (λ)∂fθ(λ)dλ fθ(ω)− C∂fθ(ω)

∣∣∣∣∣
θ=θ0

.

However, Lemma 4.2.2 tells us

∫ π

−π
log fθ(λ)dλ

∣∣∣∣∣
θ=θ0

= log
σ2

2π
,

which is followed by ∫ π

−π
f−1
θ (λ)∂fθ(λ)dλ

∣∣∣∣∣
θ=θ0

= 0.

If we choose c = 2π, then the equality holds. If α ̸= −1, then (4.4.2) does not

hold generally. It is easy to see that (4.2.4) holds if the spectral density does not

depend on ω.

Without obvious cases, Theorem 4.4.1 shows that if α ̸= 1, the exotic dis-

parity is not desirable from the viewpoint of asymptotic efficiency. However, if
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we want to solve an estimating function, it is usually done by Newton-Raphson

method. (See Hamilton (1994)). An non-iterative efficient estimating method

for different parametric spectral density fθ(ω) is given in Taniguchi (1987). From

the robustness of the exotic disparity, we can regard the estimate θ̂n as the initial

value θ̃ and follow the procedure

θ̂e = θ̃ −
[ ∂2

∂θ∂θT
D−1(fθ, In,X)−1

][ ∂
∂θ
D−1(fθ, In,X),

]
where D−1(fθ, In,X) is corresponding to the case α = −1. This procedure gives

an efficient estimate.

4.5 Numerical Results

Consider a AR(1) model defined by

X(t)− θ0X(t− 1) = ϵ(t), ϵ(t) ∼ i.i.d., (4.5.1)

where the innovation process is assumed to be i.i.d. random variables. The

distributions of random variables are assumed to be normal distribution, Laplace

distribution, Student’s t distribution with degrees of freedom 1, 2, 3, 4. We are

interested in estimating the coefficient θ0 in the model (4.5.1), although the

model with Student’s t distributions here are beyond our results in the previous

section since they do not have enough moments.

We generate the model with the coefficients of θ0 = 0.1, 0.3, 0.5, 0.7, 0.9.

The estimators for the coefficients are given by the procedure (4.3.1) with α =

−3,−2,−1. The initial value in the model is assumed to be 0 in the simulation.

Since the model will be influenced by the choice of the initial value, we set a

warming sample zone for 30 samples, that is to say the initial value 0 is not

contained in our samples for estimation. Without the initial 30 samples, we

use another 30 samples generated from the model (4.5.1) for estimation. The

estimation is repeated for 100 times.

The tables with odd numbers are the mean of 100 estimations. On the other

hand, the tables with even numbers are the root mean squared error (RMSE)

for the estimation.

Obviously from all tables, we can see the efficiency of the estimation with

exotic disparity with α = −1. Furthermore, the choice of α = −1 leads to a

estimation robust to the unit root process and non-stationary process from the

results of Tables 4.7 and 4.9.
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Table 4.1: Mean of Estimators for θ0 = 0.1 with α = −3,−2,−1.

Mean α = −3 α = −2 α = −1

Normal -0.013 0.011 0.056
Laplace -0.054 0.034 0.060
t(1) 0.027 -0.031 0.052
t(2) -0.080 0.018 0.043
t(3) -0.014 0.003 0.079
t(4) -0.088 -0.0845 0.043

Table 4.2: RMSE of Estimators for θ0 = 0.1 with α = −3,−2,−1.

RMSE α = −3 α = −2 α = −1

Normal 0.957 0.477 0.171
Laplace 1.005 0.538 0.162
t(1) 0.626 0.574 0.134
t(2) 1.006 0.446 0.179
t(3) 1.219 0.634 0.192
t(4) 0.893 0.773 0.205

Table 4.3: Mean of Estimators for θ0 = 0.3 with α = −3,−2,−1.

Mean α = −3 α = −2 α = −1

Normal 0.483 0.290 0.220
Laplace 0.492 0.267 0.209
t(1) 0.469 0.235 0.225
t(2) 0.360 0.288 0.204
t(3) 0.387 0.363 0.225
t(4) 0.427 0.302 0.218

Table 4.4: RMSE of Estimators for θ0 = 0.3 with α = −3,−2,−1.

RMSE α = −3 α = −2 α = −1

Normal 0.726 0.353 0.186
Laplace 0.746 0.506 0.188
t(1) 0.758 0.163 0.151
t(2) 0.766 0.388 0.179
t(3) 0.676 0.494 0.181
t(4) 0.739 0.564 0.202
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Table 4.5: Mean of Estimators for θ0 = 0.5 with α = −3,−2,−1.

Mean α = −3 α = −2 α = −1

Normal 0.852 0.681 0.398
Laplace 0.887 0.742 0.422
t(1) 0.816 0.675 0.405
t(2) 0.697 0.777 0.408
t(3) 0.828 0.634 0.412
t(4) 0.946 0.793 0.412

Table 4.6: RMSE of Estimators for θ0 = 0.5 with α = −3,−2,−1.

RMSE α = −3 α = −2 α = −1

Normal 0.809 0.610 0.187
Laplace 0.852 0.641 0.175
t(1) 0.812 0.620 0.186
t(2) 0.521 0.691 0.181
t(3) 0.697 0.504 0.178
t(4) 0.861 0.680 0.180

Table 4.7: Mean of Estimators for θ0 = 0.7 with α = −3,−2,−1.

Mean α = −3 α = −2 α = −1

Normal 0.981 1.057 0.569
Laplace 0.954 0.981 0.566
t(1) 1.04 1.252 0.598
t(2) 1.056 1.165 0.587
t(3) 1.005 1.053 0.564
t(4) 1.025 0.957 0.564

Table 4.8: RMSE of Estimators for θ0 = 0.7 with α = −3,−2,−1.

RMSE α = −3 α = −2 α = −1

Normal 0.684 0.655 0.206
Laplace 0.572 0.570 0.198
t(1) 0.580 0.731 0.149
t(2) 0.599 0.686 0.173
t(3) 0.608 0.624 0.209
t(4) 0.699 0.565 0.213
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Table 4.9: Mean of Estimators for θ0 = 0.9 with α = −3,−2,−1.

Mean α = −3 α = −2 α = −1

Normal 1.043 1.167 0.716
Laplace 1.106 1.150 0.743
t(1) 1.062 1.058 0.733
t(2) 1.086 1.087 0.750
t(3) 1.093 1.128 0.718
t(4) 1.046 1.105 0.735

Table 4.10: RMSE of Estimators for θ0 = 0.9 with α = −3,−2,−1.

RMSE α = −3 α = −2 α = −1

Normal 0.419 0.433 0.218
Laplace 0.475 0.419 0.201
t(1) 0.397 0.359 0.221
t(2) 0.372 0.326 0.190
t(3) 0.439 0.412 0.214
t(4) 0.464 0.411 0.211



Chapter 5

Quantile Estimation in

Frequency Domain

5.1 Introduction

Nowadays, the quantile-based estimation becomes a notable method in statistics

for its robustness against the moments of random variables. In this chapter, we

extend the idea of quantile method in time domain to that in frequency domain.

As the spectral distribution function for real-valued stationary process is also a

well-behaved monotone function bounded by the autocovariance function of the

process, the objective function for the quantile estimator in time domain can be

naturally extended into frequency domain.

In the context of time series analysis, Whittle (1952) mentioned that “the

search for periodicities” constituted the whole of time series theory. He proposed

an estimation method based on a nonlinear model driven by a simple harmonic

component. After the work, to estimate the frequency has been a remarkable

statistical analysis. A sequential literature by Whittle (1952), Walker (1971),

Hannan (1973a), Rice and Rosenblatt (1988) and Quinn and Thomson (1991)

investigated the method proposed by Whittle (1952) and pointed out the misun-

derstandings in Whittle (1952) respectively. The noise structure included in the

model is also generalized from white noise to the stationary process. The main

result in those works revealed the properties of the periodogram and showed

that the convergence factor of the estimator for the frequencies is n3/2, which is

different from the well known order n1/2, although the asymptotic distribution

of the method is Gaussian.

Quinn and Hannan (2001) reviewed all the results above and proposed an

alternative approach based on an iterative ARMA method. In reality, they

found that the nonlinear model for Y (t) with a peculiar frequency structure plus

56
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stationary process X(t), i.e.,

Y (t) = A cos(λt+ ϕ) +X(t)

can be rewritten, by the trigonometric relation, as

Y (t)− βY (t− 1) + Y (t− 2) = X(t)− αX(t− 1) +X(t− 2),

where α = β depend on the peculiar frequency. The method is to estimate β

for given α and substitute β for α. The procedure repeats until α and β are

sufficiently close.

Different from all the methods above, Koenker and Bassett (1978)’s check

function for estimating quantile can be applied to the periodogram of the sta-

tionary process to estimate frequencies. In view of correspondence between the

spectral density function and the periodogram for the stationary process, we

first directly apply the objective function to the integration functional with the

bare periodogram. Asymptotic normality of the estimator was expected from

the result by Hosoya (1989) on the bracketing condition in frequency case. The

approach for estimating quantiles in frequency domain certainly has the consis-

tency for the true value. However, asymptotic normality of the quantile estima-

tor based on the bare periodogram does not hold, which is obviously different

from the quantile estimation theory in time domain. We give the results on the

asymptotic properties of the estimator. The modified estimator for asymptotic

normality of the estimation, smoothing the bare periodogram in other words,

will also be provided. From the history of the search for periodicities, we also

give numerical results in the nonlinear time series model, although the model is

beyond the scope of this doctoral thesis.

In Chapter 5, we show the asymptotic results for our estimator of frequen-

cies based on the quantile method in frequency domain. In Section 5.2, we

define the quantile in frequency domain, according to the quantile defined in

time domain. For the asymptotics, we review some crucial results on spectral

distribution functions and derive the asymptotic properties of the perturbation

of the functional of the periodogram in Section 5.3. In Section 5.4, we explore

the asymptotic properties of the estimator of frequencies based on the quan-

tile method in frequency domain. We give the improvement of the estimator in

Section 5.5 since it is not asymptotic normal. The numerical results are given

in Section 5.6. The notations and symbols used in this section are listed in

the following: cum(X1, . . . , Xn) denotes the cumulant of the random variables
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{X1, . . . , Xn}; 1(·) denotes the indicator function; e denotes the Napier’s con-

stant; B(t) denotes the σ-field generated by the uncorrelated process {ϵ(s)}ts=−∞

in the section; Id denotes the d-dimensional identity matrix;
P−→ and

L−→ denote

the convergence in probability and the convergence in law, respectively.

5.2 Quantiles in Frequency Domain

Suppose {X(t) ; t ∈ Z} is a second order stationary process. The observation

stretch for the process is defined by {X(t) ; 1 ≤ t ≤ n}. From Herglotz’s theorem,

there exists a right continuous distribution function F (µ) for the autocovariance

function γ(k) of the process such that

γ(k) =

∫ π

−π
eikµF (dµ), (k ∈ Z).

The function F (µ) is called the spectral distribution function. The structure of

the second order stationary process can be discriminated by their own spectral

distribution function F (µ).

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

(a) White noise.

-3 -2 -1 1 2 3

0.5

1.0

1.5

(b) MA(1) process with coefficient 0.9.
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(d) AR(1) process with coefficient -0.9.

Figure 5.1: Spectral distributions of second order stationary processes.

Here, we give 4 figures of spectral distribution functions of second order

stationary processes with standard normal innovation. For simplicity from now

on, write R(0) = ΣX . Suppose the ψth quantile λ for the distribution function
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F (µ) over 0 ≤ ψ ≤ ΣX defined by

λ = F−1(ψ) = inf{µ ;F (µ) ≥ ψ}. (5.2.1)

Equivalently, for 0 ≤ p ≤ 1,

λ = inf{µ ;F (µ)Σ−1
X ≥ p}.

In the following, we propose the estimator for the frequency λ and discuss the

remarkable asymptotic properties of the estimation.

In the estimation for quantiles in time domain, the check function ρτ (u)

defined in the following way is usually used (e.g. Koenker and Bassett (1978),

Koenker (2005)):

ρτ (u) = u(τ − 1(u < 0)). (5.2.2)

The graphs of the functions (5.2.2) with different τ are shown in Figure 2.1.

We minimize this check function to estimate the τth quantile of a distribution

function for a random variable.

The idea can be naturally extended into frequency domain, i.e., define λ̂n for

λ by

λ̂n = argmin
θ

∫ π

−π
ρp(ω − θ)In,X(ω)dω. (5.2.3)

Here, the periodogram In,X(ω) based on {X(t) ; 1 ≤ t ≤ n} is defined by

In,X(ω) =
1

2πn

∣∣∣ n∑
j=1

X(j)eijω
∣∣∣2. (5.2.4)

As an result, it is easy to check that for the spectral density f(ω), the minimizer

of ∫ π

−π
ρp(ω − θ)f(ω)dω

is corresponding to the ψth quantile λ of the distribution function F (ω).

5.3 Some Results on Empirical Spectral Distributions

In this section, we review some results on empirical spectral distributions. Sup-

pose {X(t)} is second order stationary and has a spectral density f(ω), that

is to say that the spectral distribution function is absolutely continuous with
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respect to the Lebesgue measure. Correspondingly, suppose the kth autocovari-

ance function γ(k) defined by

γ(k) =

∫ π

−π
e−ikωf(ω)dω.

It is a usual method that we use to estimate parameters by using the form

J(A) =

∫ π

−π
A(ω)f(ω)dω.

For estimating J(A), we use a discrete statistic or equivalently a continuous

statistic

J (n)(A) =
2π

n

n−1∑
t=1

A
(2πt
n

)
In,X

(2πt
n

)
=

∫ π

−π
A(ω)In,X(ω)dω.

As for this statistic, the asymptotic properties are given in the following

Lemma.

Assumption 5.3.1.

(i) For each nonnegative integer m and η1 > 0,

Var[E{ϵ(t)ϵ(t+m)|B(t− τ)} − δ(m, 0)σ2] = O(τ−2−η1)

uniformly in t.

(ii) For η2 > 0,

E|E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)|B(t1 − τ)} −E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)}| = O(τ−1−η2),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4.

Lemma 5.3.2 (Brillinger (2001), Theorem 7.6.1). Suppose {X(t)} is a real

valued stationary process satisfying Assumption 5.3.1. For any bounded variation

function A(ω) on [−π, π],

EJ (n)(A) =
2π

n

n−1∑
t=1

A
(2πt
n

)
f
(2πt
n

)
+ o(1)

=

∫ π

−π
A(ω)f(ω)dω + o(1). (5.3.1)
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Furthermore, we have

Cov(J (n)(A), J (n)(A)) =
2π

n

(∫ π

−π
A(ω)A(ω)f(ω)2dω+

∫ π

−π
A(ω)A(−ω)f(ω)2dω

)
+

2π

n

∫ π

−π

∫ π

−π
A(ω1)A(−ω2)Q̃X(ω1, ω2,−ω2)dω1dω2 + o(n−1). (5.3.2)

Lemma 5.3.2 gives a good grasp of the estimation of empirical spectral dis-

tribution. In fact, suppose

Bλ(ω) =

1 −π ≤ ω ≤ λ,

0 otherwise,

then J (n)(Bλ) is the empirical spectral distribution, that is,

J (n)(λ) ≡ J (n)(Bλ) =
2π

n

∑
0<2πt/n≤λ

In,X

(2πt
n

)
.

Since Bλ(ω) is obviously bounded variation, we have from (5.3.1) and (5.3.2),

for 0 ≤ λ, µ ≤ 0,

EJ (n)(Bλ) → J(λ) ≡
∫ λ

π
f(ω)dω,

and

nCov(J (n)(λ), J (n)(µ)) =

2π
(∫ min(λ,µ)

0
f(ω)2dω +

∫ λ

0

∫ µ

0
Q̃X(ω1, ω2,−ω2)dω1dω2

)
.

Another appealing result on the empirical spectral distribution is that it can

be embedded in the space of càdlàg functions. Let Dc[−π, 0] denote the space

of complex càdlàg functions. There is a metric that makes the space complete

and separable. We suppose the space is equipped with the metric and then the

topology follows.

Assumption 5.3.3. For any η3 > 0 and for any integer L ≥ 0, there exists

Bρ > 0 such that

E[T (n, s)21{T (n, s) > Bη3}] < η3

uniformly in n and s, where

T (n, s) = n−1/2
L∑

r=0

{ n∑
t=1

ϵ(t+ s)ϵ(t+ s+ r)− σ2δ(0, r)
}2

With the same definition, we have the following result:
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Lemma 5.3.4 (Brillinger (2001), Theorem 7.6.3). Suppose {X(t)} is a real-

valued stationary process satisfying Assumptions 5.3.1 and 5.3.3. The sequence

of empirical spectral distributions
√
n(J (n)(λ) − J(λ)) on [−π, 0] converges in

distribution to a Gaussian process {G(λ)} on [−π, 0] with mean 0 and covariance

Cov(G(λ), G(µ)) = 2π
(∫ min(λ,µ)

0
f(ω)2dω +

∫ λ

0

∫ µ

0
Q̃X(ω1, ω2,−ω2)dω1dω2

)
for −π ≤ λ, µ ≤ 0.

The result is powerful since asymptotic normality for the empirical spectral

distribution
√
n(J (n)(λ) − J(λ)) holds simultaneously, and naturally the distri-

bution of any proposed test statistics for Gaussian process follows. If the process

{X(t)} is Gaussian, then the integration of the fourth order spectral is 0 and

then the Gaussian process G(λ) has independent increments

Cov(G(λ1)−G(λ2), G(µ1)−G(µ2)) = 0

for −π ≤ λ1 ≤ λ2 ≤ µ1 ≤ µ2 ≤ 0. Furthermore, the Gaussian process is exactly

Brownian motion and the process is given by

√
2π

∫ λ

0
f(ω)dB(ω).

As an application of the results in this section, we would like to consider the

distribution of

Tn(λ) ≡ an

∫ λ+a−1
n

λ
In,X(ω)dω, (5.3.3)

where {an} is a monotone increasing process with an → ∞. Note that if an → 0,

then the quantity is a form of smoothing the periodogram, so we eliminate the

case. It is not difficult to expect the quantity can be approximated by In,X(λ)

without any influence by the factor an. The expectation, however, is wrong. We

will investigate the case in a general way.

Divide Tn(λ) by

an

∫ λ+a−1
n

0
In,X(ω)dω − an

∫ λ

0
In,X(ω)dω.

The variance structure of two parts is given by

Var
(
an

∫ λ+a−1
n

0
In,X(ω)dω

)

=
a2n
n
2π
(∫ λ+a−1

n

0
f(ω)2dω +

∫ λ+a−1
n

0

∫ λ+a−1
n

0
Q̃X(ω1, ω2,−ω2)dω1dω2

)
,
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Var
(
an

∫ λ

0
In,X(ω)dω

)

=
a2n
n
2π
(∫ λ

0
f(ω)2dω +

∫ λ

0

∫ λ

0
Q̃X(ω1, ω2,−ω2)dω1dω2

)
,

and

Cov
(
an

∫ λ+a−1
n

0
In,X(ω)dω, an

∫ λ

0
In,X(ω)dω

)
=
a2n
n
2π
(∫ λ

0
f(ω)2dω +

∫ λ

0

∫ λ+a−1
n

0
Q̃X(ω1, ω2,−ω2)dω1dω2

)
.

As a result, the variance of Tn(λ) is given by

Var(Tn(λ)) =
a2n
n
2π
(∫ λ+a−1

n

λ

∫ λ+a−1
n

0
Q̃X(ω1, ω2,−ω2)dω1dω2

+

∫ λ+a−1
n

λ
f(ω)2dω −

∫ λ

0

∫ λ+a−1
n

λ
Q̃X(ω1, ω2,−ω2)dω1dω2

)
. (5.3.4)

We can see the result from (5.3.4) by cases:

(i) if an = nβ where β < 1, then the limiting variance of Tn(λ) is

Var(Tn(λ)) → 0,

(ii) if an = nβ where β > 1, then the limiting variance of Tn(λ) is

Var(Tn(λ)) → ∞,

(iii) if an = nβ where β = 1, then the limiting variance of Tn(λ) is

Var(Tn(λ)) → 2πf(λ)2.

We remove the case of β > 1 and the reason is given below the next theorem.

The results are summarized as follows.

Theorem 5.3.5. Suppose {X(t)} is a real valued stationary process satisfying

Assumption 5.3.1. Let Tn(λ) be

Tn(λ) = nβ
∫ λ+n−β

λ
In,X(ω)dω.
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Then the asymptotic variance of Tn(λ) is given by

lim
n→∞

Var(Tn(λ)) =

0, if β < 1,

2πf(λ)2, if β = 1.

In the case of i.i.d. random variables, the empirical distribution function can

be approximated by the distribution function and the results do not depend on

the order of factors. The result in Theorem 5.3.5 may seem surprising at first

glance. However, we can explain the result in a heuristic way.

Returning back to the definition of Tn(λ). The quantity

∫ λ+n−β

λ
In,X(ω)dω

is actually a discrete statistic

2π

n

∑
λ≤2πs/n≤λ+n−β

In,X(
2πs

n
).

See the number of periodograms In,X(λs) with different frequencies, we can find

that it depends on the order of n−β. If β < 1, then more and more periodograms

will be involved in the summation. Conversely, if β > 1, then the interval for the

frequency will be smaller and smaller. The variance depends on the definition of

the periodogram and the frequency is rational or not. Only the case β = 1 keeps

the same order and therefore only one periodogram In,X(λ) in the summation.

Thus in the case of β < 1, the case corresponds to the smoothing method

of the periodogram for the process and asymptotic variance will be 0. On the

other hand, if β = 1, approximation by In,X(λ) is reasonable.

5.4 Estimation of Quantiles in Frequency Domain

Consider the samples {X(t)}nt=1 are generated by a symmetric real-valued pro-

cess

X(t) =
∞∑
j=0

G(j)ϵ(t− j), (5.4.1)

where the process {ϵ(t)} is a uncorrelated fourth-order stationary process, i.e.,

Eϵ(t) = 0,

Eϵ(t)ϵ(s) = σ2δ(t, s),
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with
∑∞

t1,t2,t3=−∞|Qϵ(t1, t2, t3)| <∞. The coefficients G(j) are supposed to be

∞∑
j=0

G(j)2 <∞, (5.4.2)

where A(0) = 1. Under the condition (5.4.2), the process {X(t)} has a spectral

density function

fX(ω) =
σ2

2π
d(ω)d(ω)∗, (5.4.3)

where d(ω) =
∑∞

j=0G(j)e
iωj .

In this section, we afresh assumptions for simplicity of representation in the

following results.

Assumption 5.4.1.

(i) For each nonnegative integer m and η1 > 0,

Var[E{ϵ(t)ϵ(t+m)|B(t− τ)} − δ(m, 0)σ2] = O(τ−2−η1)

uniformly in t.

(ii) For η2 > 0,

E|E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)|B(t1 − τ)} −E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)}| = O(τ−1−η2),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4.

(iii) for some η > 0, the spectral density f satisfies

sup
|λ|<ϵ

∫ π

−π
tr[ { f(ω)− f(ω − λ) }{ f(ω)− f(ω − λ) }∗ ]dω = O(ϵη),

as ϵ→ 0.

Based on observation stretch (X(1), . . . , X(n)), define the periodogram In,X(ω)

by (5.2.4).

Lemma 5.4.2 (Hosoya (1989)). Under Assumption 5.4.1, we have

(i) for any square-integrable Hermitian matrix-valued function ϕ(ω),∫ π

−π
tr{ (In,X(ω)− EIn,X(ω))ϕ(ω) }dω P−→ 0.

(ii) for η > 0 defined in Assumption 5.4.1,∫ π

−π
|EIn,X(ω)− f(ω)|2dω = O(n−η).
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In this section, we are interested in the parameter λ, the ψth quantile of the

spectral distribution F (ω), and derive the asymptotic properties of the estima-

tion based on the quantile method. Suppose the parameter space is defined by

Λ = [−π, π] and λ is in the interior of Λ. Drawing the motivation in independent

and identical distribution case in Koenker (2005), define S(θ) by

S(θ) =

∫ π

−π
ρp(ω − µ)f(ω)dω, (5.4.4)

where

ρp(u) = u(p− 1(u < 0)).

For estimation, suppose the objective function Sn(θ) is given by

Sn(θ) =

∫ π

−π
ρp(ω − θ)In,X(ω)dω.

Hence, we can construct the estimator λ̂n for λ by

λ̂n = argmin
θ∈Λ

Sn(θ). (5.4.5)

Theorem 5.4.3. Suppose {X(t)}nt=1 are generated by (5.4.1) and the ψth quan-

tile λ of the spectral distribution function of {X(t)} is defined by (5.2.1). If

Assumption 5.4.1 holds and λ̂n is defined by (5.4.5), then we obtain

λ̂n → λ.

Proof. First, we confirm the uniqueness of λ. From the equivalent definition

that λ minimizes (5.4.4), we first differentiate the estimating function (5.4.4)

with respect to θ,
∂

∂θ
S(θ) = F (θ)− pΣX .

There exists only one zero of ∂
∂θS(θ) = 0 from the monotonicity of the spectral

distribution F (θ), which the uniqueness of λ follows. Let m be the minimum of

S(θ). Next, the convexity of Sn(θ) is shown by the positiveness of the second

derivative of Sn(θ), i.e.,

∂2

∂θ2
Sn(θ) = In,X(θ) > 0 a.s.

Also, the pointwise convergence of Sn(θ) is obtained from the definition of S(θ),

since for each θ ∈ Λ,

|Sn(θ)− S(θ)| ≤
∣∣∣∫ π

−π
ρp(ω − θ)(In,X(ω)− EIn,X(ω))dω

∣∣∣
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+
∣∣∣∫ π

−π
ρp(ω − θ)(EIn,X(ω)− f(ω))dω

∣∣∣,
where the right hand side converges to 0 in probability by Lemma 5.4.2.

By the Convexity Lemma in Pollard (1991),

sup
λ∈K

|Sn(θ)− S(θ)| P−→ 0, (5.4.6)

for any compact subset K ⊂ Λ.

Let B(λ) be any open neighborhood of λ. From the uniqueness of zero of

S(θ), there exists an ϵ > 0 such that infµ∈Λ/B(λ)|S(µ)| > m + ϵ. Thus, with

probability tending to 1,

inf
µ∈Λ/B(λ)

Sn(µ) ≥ inf
µ∈Λ/B(λ)

S(µ)− sup
µ∈Λ/B(λ)

|S(µ)− Sn(µ)| > m,

where it is implied by (5.4.6) that the second term can be chosen arbitrarily small.

The conclusion follows that with probability tending to 1, Sn(λ̂n) ≤ m − ϵ∗ by

the pointwise convergence of Sn(λ) in probability.

To investigate the asymptotic distribution of the estimator λ̂n, we follow the

argument of the empirical process. First, we review the general result. If the

objective function is defined in the way of empirical process, i.e.,

Sn(δ) =
an√
n

n∑
i=1

ρ(θ − a−1
n δ),

where ρ is a convex function, which is minimized by the minimizer δ̂n = an(θ̂n−θ)
of the process Sn(δ), then the argument to derive the asymptotic distribution of

the estimator is mainly based on the result that if Sn(δ)
L−→ S(δ), then

δ̂n = an(θ̂ − θ)
L−→ δ ≡ argminS(δ),

which is studied in Hjort and Pollard (1993) and Geyer (1996). We need a

Lindeberg-type condition to guarantee the asymptotic normality for the conver-

gence in distribution of the process.

Assumption 5.4.4 (Lindeberg type condition). For any η3 > 0 and for any

integer L ≥ 0, there exists Bη3 > 0 such that

E[T (n, s)21{T (n, s) > Bη3}] < η3
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uniformly in n and s, where

T (n, s) = n−1/2
L∑

r=0

{ n∑
t=1

ϵ(t+ s)ϵ(t+ s+ r)− σ2δ(0, r)
}2
.

The problem with the asymptotics of the estimator is its convergence order

since the behavior of (5.3.3) depends heavily on the choice of the order an.

The answer of this question is an =
√
n. We will give the proof below the

following theorem, and other orders can be found not adequate following the

same argument in the proof.

Theorem 5.4.5. Suppose {X(t)}nt=1 are generated by (5.4.1) and the ψth quan-

tile λ of the spectral distribution function of {X(t)} is defined by (5.2.1). If

Assumptions 5.4.1 and 5.4.4 hold, and λ̂n is defined by (5.2.3), then for −π ≤
λ ≤ 0,

√
n(λ̂n − λ) →d N (0,Σ),

where the asymptotic variance is given by

Σ = E −2σ2,

with E , an exponential random variable with mean f(λ) and

σ2 = 4πp2
∫ π

−π
f(ω)2dω + 2π(1− 4p)

∫ λ

−π
f(ω)2dω

+ 2π

∫∫ π

−π
(p− 1(ω1 < λ))(p− 1(ω2 < λ))QX(ω1,−ω2, ω2)dω1dω2.

We remark that the asymptotic distribution is normal given a exponential

distributed random variable independent of the normal distribution. This is not

expected only from the quantile estimation in time domain.

Proof. The proof depends on the theory of empirical process (see van der Vaart

and Wellner (1996)), where we only have to show the discretized case. First,

consider the process

Mn(δ) = n
{
Sn(λ+

δ√
n
)− Sn(λ)

}
,

which is minimized by
√
n(λ̂n − λ) from the definition. To treat ρp(u) explicitly

in the proof, divide ρp(u) by Knight’s identity (see Knight (1998)) as

Mn(δ) = −δ
√
n

{∫ π

−π
(p− 1(ω < λ))(In,X(ω)− f(ω))dω

}
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+

∫ π

−π

∫ δ/
√
n

0
n (1(ω ≤ λ+ s)− 1(ω ≤ λ)In,X(ω)dsdω

= Mn1(δ) +Mn2(δ), (say).

By the central limit theorem in the frequency domain,

Mn1(δ)
L−→ −δN (0, σ2),

where

σ2 = πp2
∫ π

−π
f(ω)2dω + 2π(1− 4p)

∫ λ

−π
f(ω)2dω

+ 2π

∫∫ π

−π
(p− 1(ω1 < λ))(p− 1(ω2 < λ))QX(ω1,−ω2, ω2)dω1dω2.

From Theorem 5.3.5, in view of

n

∫ λ+n−1

λ
In,X(ω)dω = In,X(λ), (5.4.7)

we will use this order for evaluating Mn2(δ). The second term Mn2(δ) can be

evaluated by

Mn2(δ) =

∫ δ/
√
n

0

∫ λ+s

λ
n In,X(ω)dωds

=
1

n

∫ δ
√
n

0

(
n

∫ λ+t/n

λ
In,X(ω)dω

)
dt

=
1

n

∫ δ
√
n

0
tIn,X(λ)dt

=
1

2
In,X(λ)δ2.

This term actually does not converge in probability, but has an asymptotic

exponential distribution which has mean f(λ) (= E , say). If we show that(
Mn1(δ)

Mn2(δ)

)
L−→

(
N
E

)
,

then by continuous mapping theorem, we obtain

Mn(δ)
L−→M(δ) = −δN +

1

2
δE 2,

which is minimized by δ = E −1N . As a consequence,

√
n(λ̂n − λ) →d N (0, U).
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From here, we show the convergence in distribution of the joint random

vectors (
Mn1(δ)

Mn2(δ)

)
.

Denote C(m) =
∑n−m

s=1 X(s)X(s+m) as the sample covariance.

Lemma 5.4.6 (Hosoya and Taniguchi (1982), Lemma 2.2). Under Assumptions

5.4.1 and 5.4.4, Then n−1/2(C(m)−γ(m)) (m = 1, . . . , l) have a joint asymptotic

normal distribution with covariance V , where Vm1m2 is given by

Vm1m2 = 2π

∫ π

−π
f2(ω){exp(−i(m2 −m1)ω) + exp(i(m2 +m1)ω)}dω

+ (2π)−2κ4

∫ π

−π

∫ π

−π
exp(im1ω1 + im2ω2)Q(ω1,−ω2, ω2)dω1dω2,

where Q(ω1,−ω2, ω2) is the fourth order spectral density of the process.

For next result, we have to extend the domain of periodogram on the lattice

as in Brockwell and Davis (1991). That is to say, for any ω ∈ [−π, π], define the

periodogram In,X(ω) discretely by In,X(ωk), where ωk is defined as the closest

frequency of the multiple of 2π/n. It is easy to see that

|In,X(ω)− In,X(ωk)| = op(1).

Note that the general result is studied in Chapter 3. For asymptotic distribution

of In,X(ωk), we only have to apply Theorem 3.4.3 to the second order stationary

process {X(t); t ∈ Z}.

Lemma 5.4.7 (Brockwell and Davis (1991)). If −π < ωk < 0 then the random

vector

n−1/2
( n∑
t=1

X(t) cos(ωkt),

n∑
t=1

X(t) sin(ωkt)
)′

has a joint asymptotic normal distribution with the covariance matrix 1/2σI2.

Combing these two lemmas, we have the following result.

Lemma 5.4.8. Under Assumptions 5.4.1 and 5.4.4, the asymptotic joint distri-

bution of the sample covariances and the trigonometric transform of samples is
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given by

n−1/2



C(1)− γ(1)
...

C(l)− γ(l)∑n
t=1X(t) cos(λt)∑n
t=1X(t) sin(λt)


L−→ N (0,


V 0 0

0 1
2σ

2 0

0 0 1
2σ

2

). (5.4.8)

Proof. The statement will be shown by Cramér-Wold device. Suppose t =

(t1, . . . , tL+2) and denote the left hand side of (5.4.8) by S. This time,

n−1
n∑

t=1

E((tTS)21(|tTS| > n1/2ϵ)) → 0,

by the symmetricity of the process. Also, since the process is symmetric, for any

1 ≤ m ≤ L,

Cov(n−1/2C(m), n−1/2
n∑

t=1

X(t) cos(λt))

= n−1
n−m∑
s=1

n∑
t=1

cum(X(s), X(s+m), X(t)) = 0,

By Lindeberg’s central limit theorem, the conclusion holds.

5.5 Improvement of Quantile Estimation

As what we have seen in the previous section, the asymptotic distribution is

peculiar while it acts like a sandwich form. Simultaneously, it is obviously possi-

ble to improve the asymptotic distribution of the estimator. The characteristic

property of the distribution of (5.4.7) can be made converge in probability by the

method of smoothing or sometimes called tapering. Instead of bare periodogram,

we propose smoothed periodogram defined by

f̂(λ) =
1

2π

∑
|k|≤mn

An(k)In,X(ωj+k). (5.5.1)

Assumptions on An(k) are given as follows.

Assumption 5.5.1. Let An(k) satisfy

(i) m→ ∞ and m/n→ 0 as n→ ∞.

(ii) For all k, An(k) = An(−k) and An(k) ≥ 0.
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(iii)
∑

|k|≤mn
An(k) = 1.

(iv)
∑

|k|≤mn
An(k)

2 → 0 as n→ ∞.

Lemma 5.5.2 (Brockwell and Davis (1991), Theorem 10.4.1). Suppose
∑∞

t=−∞

|j|1/2|G(j)| <∞. If f̂(λ) is defined by (5.5.1) under Assumption 5.5.1, we obtain

for λ, ω ∈ [0, π],

(i) limn→∞ f̂(λ) → f(λ),

(ii) the covariance is given by

lim
n→∞

( ∑
|k|≤m

An(k)
2
)−1

Cov(f̂(λ), f̂(ω)) =


2f(λ)2 if λ = ω = 0 or π,

f(λ)2 if 0 < λ = ω < π,

0 if λ ̸= ω.

Lemma 5.5.2 shows the consistency of the smoothed periodogram. The dis-

crete form (5.5.1) can be rewritten in a integration form by

1

2π

∫ π

−π
ϕ(ω)In,X(ω)dω,

for some symmetric continuous function ϕ(ω). Then define the estimator λ̂∗n by

λ̂∗n = argmin
θ∈Λ

∫ π

−π
ρp(ω − θ)ϕ(ω)In,X(ω)dω. (5.5.2)

The result in the previous section then can be improved by the following result.

Theorem 5.5.3. Suppose {X(t)}nt=1 are generated by (5.4.1) and the ψth quan-

tile λ of the spectral distribution function of {X(t)} is defined by (5.2.1). If

Assumptions 5.4.1 and 5.4.4 hold, and λ̂∗n is defined by (5.5.2), then for −π ≤
λ ≤ 0,

√
n(λ̂∗n − λ) →d N (0,Σ),

where

Σ = f(λ)−2σ2,

and

σ2 = πp2
∫ π

−π
ϕ(ω)2f(ω)2dω + 2π(1− 4p)

∫ λ

−π
ϕ(ω)2f(ω)2dω

+ 2π

∫∫ π

−π
(p− 1(ω1 < λ))(p− 1(ω2 > −λ))

× ϕ(ω1)ϕ(ω2)QX(ω1, ω2,−ω2)dω1dω2.
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5.6 Numerical Results

In this section, we give the numerical results of the estimated quantiles of the

spectral distribution we mentioned in Section 5.2. The estimator λ̂n is given by

(5.2.3), and the size of samples generated from the process is supposed to be 30.

5.6.1 stationary case

First, we give numerical results on the second order stationary process given in

Section 5.2, that is white Gaussian noise model, MA(1) Gaussian process with

coefficient 0.9, AR(1) Gaussian process with coefficient 0.9 and AR(1) Gaussian

process with coefficient -0.9. The structures of these four models are obviously

different. Suppose we want to specify the structure of the model by the method

of estimating the frequencies.

Table 5.1: Estimated quantiles λ̂n of the spectral distribution.

p White noise MA(1) AR(1) with 0.9 AR(1) with -0.9

0.5 0.000 0.000 0.000 0.000
0.6 0.305 0.211 0.026 2.940
0.7 1.187 0.576 0.055 3.030
0.8 1.564 0.891 0.092 3.074
0.9 2.093 1.235 0.190 3.109
1.0 3.142 3.142 3.142 3.142

It is easy to see that the results are corresponding to the figure of the distri-

bution function in Section 5.2. However, the result is not so desirable since the

estimated frequencies are not equidistant in the white noise.

As the results in the general asymptotic theory, if the estimator is asymp-

totically normal, then the estimate result will be improved by the increasing

number of samples. However, as what we have shown in Section 5.4, the estima-

tor (5.2.3) is based on the bare periodogram and therefore is not asymptotically

normal. We next give the results in the white noise case with different numbers

of samples to see the phenomenon.
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Table 5.2: Estimated quantiles λ̂n in the case of white noise with different
numbers of samples.

p\ n 30 50 100 200

0.5 0.000 0.000 0.000 0.000
0.6 0.305 0.663 0.366 0.745
0.7 1.187 1.226 0.966 1.260
0.8 1.564 1.990 1.602 1.881
0.9 2.093 2.440 2.251 2.334
1.0 3.142 3.142 3.142 3.142

From Table 2, we can see the accuracy is not obviously improved by the

increase of the number of samples. This result supports the asymptotic results

given in Theorem 5.4.5 in Section 5.4.

5.6.2 nonlinear time series model

At last, we want to search the frequencies in the nonlinear time series models

given in the historical consideration. With the same settings of X(t) given in

5.6.1, we add a harmonic component mt in the model with ω0 = π/2, i.e.

Yt = 1/2 cos(ω0 t) + sin(ω0 t) +X(t), mt = 1/2 cos(ω0 t) + sin(ω0 t).

As already known, the periodogram has a large change at the certain fre-

quency ω0 = π/2, which we add in the harmonic component in this example.

Compared with the example in Section 5.6.1, we can see that the estimated

quintiles are pulled around to the certain frequency ω0.

Table 5.3: Estimated quantiles λ̂n of the spectral distribution.

p White noise MA(1) AR(1) with 0.9 AR(1) with -0.9

0.5 0.000 0.000 0.000 0.000
0.6 1.399 0.412 0.030 2.610
0.7 1.513 0.789 0.065 3.014
0.8 1.577 1.254 0.116 3.066
0.9 1.679 1.582 1.152 3.106
1.0 3.142 3.142 3.142 3.142

If we have a purpose to estimate the certain frequency supposed in the non-

linear time series model, then we have to narrow the span in the ratio p and

find the greatest increase in the frequency. We will skip the discussion on the

method since it is beyond the scope of this doctoral thesis.



Chapter 6

Empirical Likelihood Method

for Time Series with Infinite

Variance

6.1 Introduction

Recently, the multivariate data with infinite variance appear in various fields like

finance, economics and hydrology. To model these phenomena, one choice is to

apply generalized linear process with stable innovations to the case.

Figure 6.1: Stable distribution (α = 1.5) and normal distribution (α = 2).

Figure 6.2: AR(1) model driven by Stable distribution (α = 2, 1.7, 1.5, 1.2, 1).
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Figure 6.1 shows the probability density of both stable distribution and nor-

mal distribution (α = 1.5 and α = 2 with σ = 1). Figure 6.2 shows a linear

process driven by the stable innovation (α = 2, 1.7, 1.5, 1.2, 1) with σ = 1. Al-

though the difference between the probability density functions is not seemingly

so much, it is easy to see that the linear process with smaller index waves more

dynamically in its range. In fact, only the case of α = 2 has finite variance, and

the others do not. Accordingly, a process under regular conditions with finite

moments is much more different from the stable one.

As for stable random variables, Feller (1971) gives an overview of them from

several different points of view. The pioneer works on the dependent case, es-

pecially for 1-dimensional linear process, are given by (a) Davis and Resnick

(1985), (b) Davis and Resnick (1985) and (c) Davis and Resnick (1986). They

studied the asymptotic distribution of the partial sum of the product of two

stable random variables, and then the asymptotic distribution of the sample

autocorrelation function (ACF). Applying the result on the ACF, Klüppelberg

and Mikosch (1993, 1994) and Klüppelberg and Mikosch (1996) proposed the

self-normalized periodogram in frequency domain for estimation and hypothe-

sis testing of the process with infinite variance. They gave some asymptotic

properties of the self-normalized periodogram and proved the convergence of the

integral functional containing it.

As we consider a linear time series model, not only the infinite variance

model, it is always found that the exact likelihood of the samples cannot be

specified. For second order stationary process, we usually suppose the model is

Gaussian and apply the Whittle likelihood since the likelihood corresponds to

the quasi-maximum likelihood under the assumption of Gaussian. The assump-

tion, however, is too strong. As in Chapter 4, the Whittle likelihood is shown

to be the most efficient statistic in the many classes of integration functional

type statistics and therefore is recommendable. To deal with the problem of the

unknown likelihood, the nonparametric methods are always considered in statis-

tics. In the context of time series analysis, rank based statistics are considered by

Hallin et al. (1985, 1987) and Hallin and Puri (1991). Beyond the serial sample

covariances, they focused on the linear serial rank statistics and compared the

asymptotic efficiency in the class. On the other hand, asymptotic properties of

empirical likelihood method for i.i.d. samples have been developed in successive

works by Owen (1990, 1988). The empirical likelihood statistic has attraction

for statistician since it is bartlett correctable, which is shown in DiCiccio et al.

(1991), while its competitive method “bootstrap” is not. The method then is

generalized to the dependent case by Kitamura et al. (1997) with clockwise em-

pirical likelihood in time domain and by Monti (1997) with quasi-likelihood in
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frequency domain, whose idea is originated from Monti and Ronchetti (1993).

Ogata and Taniguchi (2010) also employed the empirical likelihood method to

construct confidence region for multivariate linear processes when innovations

have finite moments.

In this chapter, we apply the empirical likelihood ratio statistic to the linear

time series model with infinite variance and give asymptotic distribution of the

statistic under the hypothesis. The estimating function contained in the empiri-

cal likelihood ratio statistic is based on the Whittle likelihood, which is shown to

be most efficient in finite variance case in Chapter 4. In Section 6.2, we give the

definitions of vector α-stable process and the empirical likelihood ratio statistic

and assumptions in this chapter. In Section 6.3, we look into the asymptotic

properties of the functional of the periodogram of the considered process and

derive the asymptotic distribution of the empirical likelihood ratio statistic un-

der the hypothesis based on the previous results. The procedure to construct

the confidence interval for the pivotal quantity contained in the empirical likeli-

hood ratio statistic and the numerical results are given in Section 6.4. We show

Theorems 6.3.1 and 6.3.2 in Section 6.5 with some remarks given in Section 6.6.

6.2 Vector α-stable Processes and Preliminaries

We consider a d-dimensional vector-valued linear process {X(t); t ∈ Z} generated
by

X(t) =

∞∑
j=0

Ψ(j)Z(t− j), (6.2.1)

where Ψ(j) are d× d real-valued matrices, and {Z(t)} is an independently and

identically distributed sequence of α-stable random vectors with symmetric in-

dependent elements. For linear model (6.2.1), we define the true power transfer

function g(ω) by

g(ω) = Ψ(ω)Ψ(ω)∗,

where Ψ(ω) =
∑∞

j=0Ψ(j)eijω.

First, we give a brief review on the notations in this chapter. we use Bold

letters to represent vectors or matrices. For an element in vectors or matrices,

we use underscript to represent it. For instance, Aj denotes the jth entry in the

vector A, where Aij denotes the element lying in the ith row and jth column of

the matrix A. The argument about the frequency domain makes us unable to

escape from the complex numbers. We generally use Ā to denote the complex

conjugate of A regardless of whether A is a complex number or a complex matrix.
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Next, characters are defined as follows. Note that we use ω ∈ [−π, π] for
continuous case, and λt = 2πt

n ∈ (−π, π] for discrete case. For any random

vector A, the sample autocovariance and the periodogram matrices are defined

by

Γ̂n,A(h) = n−2/α

n−|h|∑
t=1

A(t)A(t+ h)T ,

In,A(ω) = dn,A(ω)dn,A(ω)
∗, dn,A(ω) = n−1/α

n∑
t=1

A(t)eiωt.

Also, for the precise convergence order in the linear stable process case, suppose

xn =
( n

log n

)1/α
,

yn =
(
n logn

)1/α
.

There are two norms used in this paper. One is the Euclidean norm, which

is denoted by ∥A ∥E =
√

tr(A∗A). Secondly, based on the observed stretch

{X(t), 1 ≤ t ≤ n}, the self-normalized term, denoted by ∥Z∥N , is defined as

follows:

∥Z∥N ≡

√√√√ n∑
t=1

d∑
i=1

Z(t)2i .

It is well known that Z(t)2i is in the domain of attraction of a stable limit

with the exponent α/2, and the linear transformation of stable distribution with

nonrandom scale is also stable with the same characteristic exponent. Thus the

sum
∑d

i=1 Z(t)
2
i is also in the domain of attraction of a stable limit with the

exponent α/2. The normalized form of vectors is written by

Z̃(t)i =
Z(t)i
∥Z∥N

, i = 1, . . . , d.

Suppose we have to test H: θ = θ0, where θ0 is defined by the solution of

the estimating function

∂

∂θ

∫ π

−π
tr
[
{f(ω;θ)}−1g(ω)

]
dω
∣∣∣
θ=θ0

= 0. (6.2.2)

The condition of equation (6.2.2) is not restrictive since we can use the con-

strained family, for example, to derive the autocorrelation, the interpolation or

the prediction of the process (6.2.1).
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The empirical likelihood ratio function introduced for the problem of testing

H: θ = θ0 is defined by

R(θ) = max
ω1,...,ωn

{
n∏

t=1

nωt ;
n∑

t=1

ωtm(λt;θ) = 0,
n∑

t=1

ωt = 1, 0 ≤ ωt ≤ 1 , ∀t

}
,

(6.2.3)

which is based on a likelihood ratio between
∏n

t=1 ωt and
∏n

t=1 n
−1. Here,

m(λt;θ) is an estimating function defined to correspond to the pivotal quan-

tity θ0. Note that we have shown the distribution of In,X(λt), and therefore the

distribution of m(λt;θ), is asymptotically independent identically distributed

from the results in Chapter 3. Thus the empirical likelihood ratio statistic R(θ)

is a well-defined ratio statistic if we use the discretized Whittle likelihood

m(λt;θ) =
∂

∂θ
tr{f(λt;θ)−1In,X(λt)}. (6.2.4)

For the brevity in the following section, we define moment functions of the

estimating function Pn(θ) and Sn(θ) as follows:

Pn(θ) =
1

n

n∑
t=1

m(λt;θ)

Sn(θ) =
1

n

n∑
t=1

m(λt;θ)m(λt;θ)
′.

Assumptions through this chapter are given below:

Assumption 6.2.1. Assume that X(t) is generated by (6.2.1) where for 0 <

δ < 1,
∞∑
j=0

j|Ψ(j)kl|δ <∞, for k, l = 1, 2, . . . , d. (6.2.5)

Remark 6.2.2. Under this assumption, (6.2.1) is well-defined. See Brockwell

and Davis (1991) or Petrov (1975).

Define the family F(Θ) of the parametrized power transfer function by

F(Θ) =
{
f(ω;θ)

∣∣∣f(ω;θ) = ( ∞∑
j=0

Ξ(j;θ)eijω
)( ∞∑

j=0

Ξ(j;θ)eijω
)∗
, θ ∈ Θ ⊂ Rp

}
.

Assumption 6.2.3.

(i) Θ is a compact subset of Rp and f(ω;θ) has an parametrized representation

as an element of F(Θ).

(ii) For any θ ∈ Int(Θ), f(ω;θ) ∈ F(Θ) is continuously twice differentiable

with respect to θ.
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(iii) There exists a unique θ0 ∈ Θ satisfying (6.2.2).

The assumption below guarantees the convergence of the functional of peri-

odogram by inequality of an application of Theorem 3.1 in Rosinski and Woy-

czynski (1987).

Assumption 6.2.4. For some µ ∈ (0, α) and all k = 1, · · · , p,

∞∑
t=1

∥∥∥∫ π

−π

∂

∂θk
Ψ(ω)∗f(ω;θ)Ψ(ω)eitωdω

∥∥∥µ
E
<∞.

6.3 Asymptotic Distribution of Empirical Likelihood

Ratio

First the limit of functional form of periodogram is shown in the following theo-

rem, which is a generalization of 1-dimensional result. Note that the discretized

form of (6.2.4) only holds when α ≥ 1. Accordingly, we assume 1 ≤ α < 2 for

the empirical likelihood ratio statistic in this chapter.

Theorem 6.3.1. Let (X(t))t∈Z be a linear process as defined in (6.2.1) with

coefficient matrices (Ψ(j))j∈Z satisfying (6.2.5) and suppose that α ∈ (0, 2). Fur-

thermore, let ϕk(ω), j = 1, . . . , d, be d× d matrix-valued 2π-periodic continuous

function with ϕk(ω) = ϕk(ω)
∗ such that the Fourier coefficients of Ψ(·)ϕk(·)Ψ(·)∗

are absolutely summable and

∞∑
t=1

∥∥∥∫ π

−π

∂

∂θk
Ψ(ω)∗ϕk(ω)Ψ(ω)eitωdω

∥∥∥µ
E
<∞

for some µ ∈ (0, α) and all k = 1, · · · , p. Then

(n−2/α∥Z∥2N , xn
∫ π

−π
tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω)

L−→ (Sα/2,

d∑
i,j=1

∞∑
h=1

S(h)ij

∫ π

−π
(A(ω) +A(ω))ij dω ),

where

A(ω) = Ψ(ω)∗ϕk(ω)Ψ(ω)eihω,

and S(h)ij is the (i, j)-component of the limit stable random matrix S(h), where

xn Γ̂n,Z(h) ⇒ S(h) for h = 1, 2, . . . .

The scale parameter of Sα/2 is given by (σαKα cos(πα/4))
2/α, where Kα =

E|N |α for an normal random variable N (0, 2), while the scale parameters of
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the elements in S(h) are given by Cα, i.e.,

Cα =


2(1−α)σ

Γ(2−α)cos(πα/2) if α ̸= 1,

4
π , if α = 1.

Theorem 6.3.1 gives a joint distribution of the random variables used for the

self-normalized periodogram. From the result, we can then derive asymptotic

distribution of the logarithm of the empirical likelihood ratio statistic R(θ0)

under the hypothesis H: θ = θ0. As mentioned in the beginning of the section,

only α ≥ 1 can be applied to the empirical likelihood ratio statistic.

Theorem 6.3.2. Let (X(t))t∈Z be a linear process as defined in (6.2.1) with co-

efficient matrices (Ψ(j))j∈Z satisfying (6.2.5) and suppose that α ∈ [1, 2). Under

Assumptions 6.2.3 and 6.2.4, if

∂

∂θ

∫ π

−π
Ψ(ω)∗f(ω;θ)−1Ψ(ω) dω

∣∣∣∣
θ=θ0

= 0, (6.3.1)

we have

− 2
x2n
n

logR(θ0)
L−→ V TW−1V under H: θ = θ0, (6.3.2)

where

V =
1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π
−π(B1(ω) +B1(ω))ijdω∫ π
−π(B2(ω) +B2(ω))ijdω

...∫ π
−π(Bq(ω) +Bq(ω))ijdω,


with

Bk(ω) = Ψ(ω)∗
∂

∂θk
f(ω;θ)−1Ψ(ω) k = 1, . . . , q,

and the component of W is expressed as

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]
+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω,

where g̃(ω) is defined as

g̃(ω) = Ψ(ω)ΣZ̃Ψ(ω)∗.

Remark 6.3.3. The condition (6.3.1) is a restriction on the parametrization

of the pivotal quantity. However, in the case of 1-dimension, the condition is

always satisfied. This is a big difference from the result of the scalar process.
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Remark 6.3.4. The condition (6.3.1) seems restrictive but it has some interest-

ing aspects. The appealing example is to consider whether the wave structures of

the spectral density function between all components are “close” to each other.

Consider a 2-dimensional case and assume the true power transfer function g(ω)

is given by

g(ω) =
1

2π

∞∑
k=−∞

R̃(k)e−ikω.

If we have to test the null hypothesis

H : R̃(k) = θ0R̃(j) or R̃(k) = θ0R̃(j)′ for some k and j,

then there exists a considerable way to choose an estimating function. Let

the estimating function m(λt;θ) be defined by an inverse correlation function

f(λt;θ)
−1, which was first introduced in Cleveland (1972), and deeply discussed

by Bhansali (1980). Suppose

f(ω; θ)−1 = (ekω + e−kω)

(
θ 0

0 θ

)
+ (ejω + e−jω)

(
1
2θ

2 0

0 1
2θ

2

)
,

then under the hypothesis, we obtain

∂

∂θ

∫ π

−π
Ψ(ω)∗f(ω;θ)−1Ψ(ω) dω

∣∣∣∣
θ=θ0

= 0,

which satisfies the condition (6.3.1) in Theorem 6.3.2.

Corollary 6.3.5. With the same assumptions and condition (6.3.1), if the pro-

cess (6.2.1) has the innovation process whose marginal distributions are all the

same, then we can simplify the equation (6.3.2) by

−2
x2n
n

logR(θ0)
L−→ V TW−1V under H: θ = θ0,

where V is defined above but the components of W can be expressed as

Wab =
1

2πd2

∫ π

−π

(
tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]
+tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω.

6.4 Numerical Results

First, we mention the procedure to construct the confidence region for the piv-

otal quantity θ. It is easy to see that from (6.3.2), the logarithm of the empirical
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likelihood ratio logR(θ) is bounded above. That is to say, the asymptotic distri-

bution of −2(x2n/n) logR(θ) is bounded below. For this reason, the confidence

region is constructed by

Cq =
{
θ ∈ Θ; −2

x2n
n

logR(θ) < uq

}
,

where uq is corresponding to the qth quantile of the distribution of V TW−1V .

Suppose that the observations (X(1), · · · ,X(300)) are generated from the

2-dimensional VAR(1) model:

X(t) +AX(t− 1) = Z(t),

where the marginal distributions of {Z(t)} are assumed to be i.i.d. symmetric

1.5-stable variables with scale 1 for simplicity. The true coefficient matrix is

given by

A =

(
0.7 θ0

0.1 0.5

)
.

Like other methods, the parametrization for the power transfer function f(ω;θ)

is possible. First, we define the fitted power transfer function f(ω;θ) corre-

sponding to the estimating function as

f(ω;θ) = (I −Bθe
iω)−1(I −Bθe

iω)−1∗, where Bθ =

(
0.7 θ

0.1 0.5

)
.

The numerical results in this case are given in Table 6.1.

Table 6.1: 90% confidence intervals and lengths for true parameter.

θ0 Confidence Interval Length

case 1. 0 (-0.1045, 0.0767) 0.1812

case 2. 0.3 (0.2546, 0.3387) 0.0840

case 3. 0.6 (0.5197, 0.6929) 0.1732

The figure corresponding to the confidence interval is given below. As for

Figure 6.3, the blue line shows the behavior of −2(x2n/n) logR(θ) with respect

to the pivotal quantity θ. The interval of the red line intercepted by the blue

line is the confidence interval for the pivotal quantity.
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Figure 6.3: Confidence interval in case 3.

Next, we examine the (1,1)-component of autocorrelation (See Brockwell and

Davis (1991)), which is defined as

ρ11(l) = γ11(l)/γ11(0), l = 0, 1, . . . .

This time, we fixed the matrix A to be

A =

(
0.7 0.5

0.1 0.5

)
.

The estimation of this quantity is equivalent to fit the power transfer function

(I −Bθe
−ilω)(I −Bθe

ilω)−1∗,

where Bθ has the form(
θ b

0 c

)
, where b and c are arbitrary constants. (See Appendix in this Chapter.)

The numerical results are given in Table 6.2.

Table 6.2: 90% confidence intervals and lengths for true parameter.

l θ0 Confidence Interval Length

case 4. 2 0.700 (0.5246, 0.8012) 0.2765

case 5. 3 0.590 (0.2930, 0.6077) 0.3147

case 6. 4 0.498 (0.0523, 0.5864) 0.5341

We also considered the case of estimation for pseudo true value. Con-

sider the observations (X(1), · · · ,X(300)) are generated from the 2-dimensional
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VMA(100) model with innovations {Z(t); t ∈ Z} whose marginal distributions

are i.i.d. symmetric 1.5-stable random variables with scale 1, and the coefficient

matrices A(j), j = 1, . . . , 100 are assumed to be

A(j) =

(
0.7j j−2bj

0 0.5j

)
.

Suppose we use the following power transfer function f(ω; θ) defined by

f(ω; θ) = (I −Bθ exp(iω))
−1(I −Bθ exp(iω))

−1∗, where Bθ =

(
0.5 θ

0.4 0.2

)
,

for estimation. The true coefficient b of the linear model, the pseudo true value

θ0 and the confidence intervals with their lengths are reported in the following

table.

Table 6.3: 90% confidence intervals and lengths for pseudo true parameter.

b θ0 ≈ Confidence Interval Length

case 7. 0 0.0000 (−0.1685, 0.1690) 0.3375

case 8. 0.3 0.1755 (0.0467, 0.3208) 0.2741

case 9. 0.6 0.3669 (0.2601, 0.4920) 0.2320

case 10. 0.9 0.5787 (0.5046, 0.6641) 0.1596

To confirm the adequacy of the approach, we evaluated the coverage error

of the empirical likelihood ratio statistics with 1000 iterations. Generally, the

coverage error is considered as a sampling error away from the theoretical proba-

bility. More specifically, we generated 1000 VMA(100) processes and calculated

the empirical likelihood ratio statistic −2(x2n/n) logR(θ
0)i for ith process. The

coverage error is considered as the empirical probability that

1

1000

1000∑
i=1

1

(
−2

x2n
n

logR(θ0)i ≥ uq

)
.

From Table 6.4 below, the coverage error becomes worse as the pseudo true

value gets larger. Looking back again from Table 6.3, we can find that the

confidence intervals correspondingly becomes smaller.
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Table 6.4: Coverage errors of confidence intervals in case 7, 8, 9 ,10.

Coverage Error

case 7. 0.011

case 8. 0.027

case 9. 0.032

case 10. 0.049

As conclusion, it can be seen that the confidence interval for the pivotal

quantity, made from the empirical likelihood ratio statistics, is not meaningless.

Furthermore, the interval is narrow enough for a good understanding of the

pivotal quantity θ0.

6.5 Proof of Theorems 6.3.1 and 6.3.2

This section is devoted to show Theorems 6.3.1 and 6.3.2. First, we derive the

asymptotics of Pn(θ
0) and Sn(θ

0).

Lemma 6.5.1. Suppose {X(t)}∞t=0 is generated by (6.2.1) satisfying (6.2.5).

Then

In,X(ω) = Ψ(ω)In,Z(ω)Ψ(ω)∗ +Rn(ω).

If ϕ(ω) is a d× d matrix-valued continuous function on [−π, π ], then

xn

∫ π

−π
tr[Rn(ω)ϕ(ω) ]dω

P−→ 0.

Proof. We follow the proof of the univariate case in Mikosch et al. (1995).

dn,X(ω) = n−1/α
n∑

t=1

X(t)eiωt = n−1/α
n∑

t=1

eiωt(

∞∑
j=0

Ψ(j)Z(t− j))

= Ψ(ω)dn,Z(ω) + n−1/α
∞∑
j=0

Ψ(j)eijωYn,j(ω),

= Jn,Z(ω) + n−1/αYn(ω) (say),

where

Yn,j(ω) =

n−j∑
t=1−j

Z(t)eiωt −
n∑

t=1

Z(t)eiωt.

Then we have

Rn(ω) = n−1/αYn(ω)Jn,Z(ω)
∗ + n−1/αJn,Z(ω)Yn(ω)

∗ + n−2/αYn(ω)Yn(ω)
∗.
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∑∞
j=0Ψ(j)eijω ≤

∑∞
j=0∥Ψ(j)∥ < ∞, so that ∥Ψ(ω)∥ is stochastically bounded.

Since every element of Z(t) is in the domain of attraction of a stable law with a

parameter α, Jn,Z(ω) is also stochastically bounded. As results in the proof of

lemma 6.2 in Mikosch et al. (1995), we know that for each l ∈ 1, 2, . . . , d,

∞∑
j=0

Ψ(j)kle
ijωYn,j(ω)l = Op(1)

and ∫ π

−π
n−2/α|

∞∑
j=0

Ψ(j)kle
ijωYn,j(ω)l|2dω = op(x

−2
n ).

Combining these two results, it is easy to see that Yn(ω) = Op(1), and by the

boundedness of ϕ(ω), the residual term

xn

∣∣∣∫ π

−π
tr[Rn(ω)ϕ(ω)] dω

∣∣∣
≤ xn

∫ π

−π
|tr[Rn(ω)ϕ(ω) ]| dω

≤ xn

∫ π

−π
∥Rn(ω)∥E∥ϕ(ω)∥E dω

≤ c1xn

∫ π

−π
∥n−1/αYn(ω)Jn,Z(ω)

∗∥E

+∥n−1/αJn,Z(ω)Yn(ω)
∗∥E + ∥n−2/αYn,Z(ω)Yn,Z(ω)

∗)∥E dω

≤ c2xn

{(∫ π

−π
∥In,Z(ω)∥2E dω

)1/2(∫ π

−π
n−2/α∥Yn(ω)∥2E dω

)1/2

+

∫ π

−π
n−2/α∥Yn(ω)∥2E dω

}
.

P−→ 0.

This is what we have to show.

Before looking into the asymptotics of Pn(θ
0), we have to show the existence

of the limit matrix of the autocovariance matrix in distribution. If the compo-

nents of the vector Z are mutually independent, then we have the lemma due

to Davis et al. (1986) by applying continuous mapping theorem.

As what we mentioned in Section 6.2, yn = (n log n)1/α. It is obvious that

Z(1)k’s satisfy followings:

P (|Z(1)i| > x) = x−αL(x), i = 1, 2, . . . , d (6.5.1)



6.5 Proof of Theorems 6.3.1 and 6.3.2 88

with α > 0 and L(x) a slowly varying function at ∞ and

P (Z(1)i > x)

P (|Z(1)i| > x)
→ w,

P (Z(1)i < −x)
P (|Z(1)i| > x)

→ v (6.5.2)

as x→ ∞, 0 ≤ w ≤ 1 and v = 1− w.

Lemma 6.5.2. Let {Z(t)} be a sequence of iid random vectors satisfying (6.5.1)

and (6.5.2) with 0 < α < 2 and E|Z(1)i|α = ∞ for all i = 1, 2, . . . , d. Then

(
n−2/α

n∑
t=1

Z(t)Z(t)′, y−1
n

n∑
t=1

Z(t)Z(t+ 1)′, . . . , y−1
n

n∑
t=1

Z(t)Z(t+ h)′

)
⇒ (S(0), S(1), . . . , S(h)),

where S(0), S(1), . . . , S(h) are independent stable random matrices; the compo-

nents of S(0) are all positive with index α/2, and S(1), . . . , S(h) are identically

distributed with index α.

Proof. See Davis et al. (1986).

Proof of Theorem 6.3.1. From Lemma 6.5.2, we can see that(
n−2/αΓ̂n,Z(0), y

−1
n Γ̂n,Z(k), k = 1 . . . , h

)
⇒ (S(0), S(1), . . . , S(h)).

Note that tr Γ̂n,Z(0) = ∥Z∥2N , according to the continuous mapping theorem, the

statement holds true if we show

xn

∫ π

−π
tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω

L−→
d∑

i,j=1

∞∑
h=1

S(h)ij

∫ π

−π
(A(ω) +A(ω))ij dω. (6.5.3)

From Lemma 6.5.1 and Lemma 6.6.1 in Appendix of this chapter,

xn

∫ π

−π
tr
[
{In,X(ω)−Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗}ϕk(ω)

]
dω

= xn

∫ π

−π
tr
[
{Ψ(ω)In,Z(ω)Ψ(ω)∗ −Ψ(ω)Γ̂n,Z(0)Ψ(ω)∗ +R(ω)}ϕk(ω)

]
dω

= xn

∫ π

−π
tr
[
{Ψ(ω)(In,Z(ω)− Γ̂n,Z(0))Ψ(ω)∗}ϕk(ω)

]
dω

+xn

∫ π

−π
tr [R(ω)ϕk(ω) ] dω

= xn

∫ π

−π
tr

[(
n−1∑
h=1

Γ̂n,Z(h)e
−ihω

)
Ψ(ω)∗ϕk(ω)Ψ(ω)

]
dω
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+ xn

∫ π

−π
tr

[(
n−1∑
h=1

Γ̂n,Z(h)
′eihω

)
Ψ(ω)∗ϕk(ω)Ψ(ω)

]
dω + op(1)

= xn

∫ π

−π

d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[
e−ihωΨ(−ω)∗ϕk(−ω)Ψ(−ω)

]
ij
dω

+

∫ π

−π

d∑
i,j=1

[
n−1∑
h=1

Γ̂n,Z(h)

]
ij

[ eihωΨ(ω)∗ϕk(ω)Ψ(ω) ]ij dω


L−→

d∑
i,j=1

∞∑
h=1

S(h)ij

∫ π

−π
(A(ω) +A(ω))ij dω.

Thus the assertion of Lemma 6.5.2 is shown by continuous mapping theorem.

Remark 6.5.3. The last result of convergence is due to Lemma 6.6.1, which

guarantees the tightness of the convergence.

Remark 6.5.4. The assumption of independence on the components of Z(t) is

for simplicity and for simulation. The condition of regular variation on the vector

case is crucial for the convergence of Z(t) with some other technical conditions.

For detail, we recommend to refer to Bartkiewicz et al. (2011).

From the definition, we have

n∑
t=1

d∑
i=1

Z̃(t)2i = 1 almost surely,

which shows the second moment of Z̃(t) is finite. By the properties that the

components of vectors are mutually independent and they are symmetry around

0, we assume generally

E
[
Z̃(t)iZ̃(s)j

]
= ΣZ̃ =


σij

n , if t = s,

0 if t ̸= s.
(6.5.4)

This is not a special case since we have the following example:

Example 2 (Case that the correlation between all elements ofZ(t) is 1). Assume

that the marginal distributions Z(t)j of Z(t) are independent symmetric α-

stable distributions with different scales σj . Then since the sum of all marginal

distribution
∑n

j=1 Z(t)j has the same distribution, we can see that

E

d∑
i=1

Z̃(t)2i =
1

n
.
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Also, according to the different scale, we can write Z(t)j = σjZ
′(t)j where all

Z ′(t)j are stable with scale 1. Then we have

E

d∑
i=1

Z̃(t)2i = E

d∑
i=1

σ2i Z̃
′(t)i =

1

n
,

which is followed by

E Z̃ ′(t)i =
1

n

(
d∑

i=1

σ2i

)−1

.

Accordingly, we have

E(Z̃(t)iZ̃(t)j) =
1

n

σiσj∑d
i=1 σ

2
i

.

The representation (6.5.4) is just a generalization of this idea.

Lemma 6.5.5. Assume the covariance matrix of self-normalized process {Z̃} is

given by ΣZ̃ . If α ∈ [1, 2), then

(n−2/α∥Z∥2N )−2Sn(θ
0)

P−→ W ,

where the (a, b)-component of W satisfies

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]
+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω,

where g̃(ω) is defined as

g̃(ω) = Ψ(ω)ΣZ̃Ψ(ω)∗.

Proof. Apply the decomposition in Lemma 6.5.1 again, we have

In,X(ω) = Ψ(ω)In,Z(ω)Ψ(ω)∗ +Rn(ω).

Using self-normalized form, we can see that

In,X̃(ω) ≡ (n−2/α∥Z∥2N )−2In,X(ω) = Ψ(ω)In,Z̃(ω)Ψ(ω)∗ +Rn(ω).

Taking the expectation of the product of periodogram of Z̃, we obtain

E(In,Z̃(λ1)pqIn,Z̃(λ2)rs)
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= E

 ∑
m,l,k,j

Z̃p(m)Z̃q(l)Z̃r(k)Z̃s(j) exp{ i((j − k)λ1 − (l −m)λ2)t}


=

σpqσrs + σprσqs + op(1) if λ1 = λ2,

σpqσrs + σpsσqr + op(1) if λ1 = −λ2.

Therefore, if we write g(λ)ab = (
∑n

j=0Ψ(j)e−ijλ)ab, then

lim
n→∞

E(In,X̃(λt)pqIn,X̃(λt)rs)

=
∑

k,l,m,n

g(λt)pkgql(λt)grm(λt)gsn(λt)(σpqσrs + σprσqs)

= g̃(ω)pqg̃(ω)rs + g̃(ω)prg̃(ω)qs.

If α ∈ [1, 2), we can write Sn(θ
0) in the integration form, i.e.

E[Sn(θ
0)ab ] =

1

2π

×
{∫ π

−π

d∑
β1,β2,β3,β4=1

g̃(ω)β1β2 g̃(ω)β3β4

∂f(ω;θ)β2β1

∂θa

∂f(ω;θ)β4β3

∂θb

∣∣∣∣∣
θ=θ0

dω

+

∫ π

−π

d∑
β1,β2,β3,β4=1

g̃(ω)β1β3 g̃(ω)β2β4

∂f(ω;θ)β2β1

∂θa

∂f(ω;θ)β4β3

∂θb

∣∣∣∣∣
θ=θ0

dω
}
.

In other words,

Wab =
1

2π

∫ π

−π

(
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g̃(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]
+tr

[
g̃(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g̃(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω.

The convergence in probability is guaranteed by the result that

∑
k ̸=l

Cov(In,Z̃(λk)
2
pq, In,Z̃(λl)

2
rs) = O(n).

Corollary 6.5.6. If all elements of Z(t) are i.i.d symmetric α stable random

variables, then

(n−2/α∥Z∥2N )−2Sn(θ
0)

P−→ W ,

where the (a, b)-component of W is

Wab =
1

2πd2

∫ π

−π

(
tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

g(ω)
∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

]
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+tr

[
g(ω)

∂f(ω;θ)−1

∂θa

∣∣∣∣
θ=θ0

]
tr

[
g(ω)

∂f(ω;θ)−1

∂θb

∣∣∣∣
θ=θ0

])
dω.

Proof of Theorem 6.3.2. First, we will derive the asymptotic distribution of the

empirical likelihood ratio. For convenience, we set p = (p1, . . . , pn). Introducing

Lagrange multiplier L(p,ϕ, k),

L(p,ϕ, k) =

n∑
t=1

log(npt)− nϕT
n∑

t=1

ptm(λt;θ
0) + k

(
n∑

t=1

pt − 1

)
.

Differentiating L(p,ϕ, k) with respect to all parameters, we have equations:

pt =
1

n

1

1 + ϕTm(λt;θ0)
,

where ϕ satisfies

1

n

n∑
t=1

m(λt;θ
0)

1 + ϕTm(λt;θ0)
= 0. (6.5.5)

If we write

Yt = ϕTm(λt;θ
0), (6.5.6)

then we have

npt = (1 + Yt)
−1,

and from (6.5.5)

ϕ = Sn(θ
0)−1

{
1

n

n∑
t=1

m(λt;θ
0)

}
+ ϵ, (6.5.7)

where we obtain the expression

ϵ =
1

n

n∑
t=1

m(λt;θ
0)Y 2

t

1 + Yt
, (6.5.8)

since it is easy to see that

1

1 + Yt
= 1− Yt +

Y 2
t

1 + Yt
.

Thus the empirical likelihood ratio can be decomposed like

−2 logR(θ0) = 2
n∑

t=1

log(1 + Yt)
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= 2
n∑

t=1

Yt −
n∑

t=1

Y 2
t +

n∑
t=1

Op(Y
3
t )

= nPn(θ
0)TSn(θ

0)−1Pn(θ
0)− nϵTSn(θ

0)ϵ+
n∑

t=1

Op(Y
3
t ).

(6.5.9)

To guarantee the order of convergence, we must control the order of ϵ and

Y 3
t simultaneously. Fortunately, we can keep them converge to 0 in probability

in the stable case as well as in the usual regular case.

To give a clear overview, we define an order in the probability order notation.

If Op(An)/Op(Bn) → op(1), then we say An convergences to 0 in probability

faster than Bn. It is denoted by

min(Op(An), Op(Bn)) = Op(An) or Op(An) ≤ Op(Bn).

If Op(An)/Op(Bn) → Op(1), then we say that An is equivalent to Bn in the order

sense.

Define Zn = max1≤i≤pmax1≤t≤nm(λt;θ
0). Then it is easy to see that

Zn ≤ max
1≤t≤n

∥∥∥ ∂
∂θ

tr{f(λt;θ0)−1In,X(λt)}
∥∥∥ ≤ C sup

i,j
ω∈[−π,π]

|In,X(ω)ij |.

Then from (6.5.7), we have

Op(∥ϕ∥)(Op(∥Sn(θ
0)∥)−Op(Zn)Op(∥Pn(θ

0)∥)) ≤ Op(∥Pn(θ
0)∥).

From (6.5.8), this leads us to the order of ϵ,

∥ϵ∥ ≤ ∥Zn∥∥Sn(θ
0)∥∥ϕ∥2|1 + Yt|−1 = Op(∥Zn∥)Op(∥Sn(θ

0)∥)Op(∥ϕ∥2)

= min(Op(Zn)Op(∥Sn(θ
0)−1∥)Op(∥Pn(θ

0)∥2), Op(Z
−1
n )Op(Sn(θ

0))).

In the regular case, we can see that

Op(∥Sn(θ
0)∥) = Op(∥Sn(θ

0)∥−1) = Op(1).

Then the expression can be considered by

min(Op(Zn)Op(∥Sn(θ
0)−1∥)Op(∥Pn(θ

0)∥2), Op(Z
−1
n )Op(Sn(θ

0)))

= Op(Zn)Op(∥Pn(θ
0)∥2)
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from LIL and CLT. Thus the order of ∥ϵ∥ is

∥ϵ∥ = Op(n
−1 log n),

because of

Op(Zn) = Op(log n),

Op(∥Pn(θ
0)∥) = Op(n

−1/2).

In the stable case, defining the statistic well seems a little crucial. In this

paper, the order of the statistic Sn(θ
0) is Op(1). As shown in Mikosch and

Samorodnitsky (2000), if α ̸= 1,

Op(Zn) = Op((log n)
2−2/α)

Op(∥Pn(θ
0)∥) = Op((log n/n)

1/α),

which is followed by

∥ϕ∥ = Op((log n/n)
1/α).

Therefore

∥ϵ∥ = Op((log n)
2n−2/α).

In both cases, we can simplify the notation, that is,

∥ϵ∥ = op(1).

Last, we investigate the third term in (6.5.9). From (6.5.6), it is easy to see

that

|Yt|3 ≤ ∥ϕ∥3∥m(λt;θ
0)∥3 = Op((log n)

2+1/αn−3/α).

Now, multiplying true order x2n/n to the empirical likelihood ratio in (6.5.9),

the orders of the last two terms in the right hand side are Op((log n)
4−2/αn−2/α)

and Op((log)
2−1/αn−1/α) respectively, and thus op(1).

Apply Theorem 6.3.1 to xnPn(θ
0), we can see that

xnPn(θ
0) =

xn
2π

∫ π

−π

∂

∂θ
tr
[
f(ω;θ)−1In,X(ω)

]
dω
∣∣∣
θ=θ0

=
xn
2π

∫ π

−π

∂

∂θ
tr
[
f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}

]
dω
∣∣∣
θ=θ0

=
xn
2π
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×



∫ π
−π tr

[
∂

∂θ1
f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}

]
dω
∣∣∣
θ=θ0∫ π

−π tr
[

∂
∂θ2

f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}
]
dω
∣∣∣
θ=θ0

...∫ π
−π tr

[
∂

∂θq
f(ω;θ)−1{In,X(ω)−Ψ(ω)(Γ̂n,Z(0))Ψ(ω)∗}

]
dω
∣∣∣
θ=θ0



L−→ 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij


∫ π
−π(B1(ω) +B1(ω))ijdω∫ π
−π(B2(ω) +B2(ω))ijdω

...∫ π
−π(Bq(ω) +Bq(ω))ijdω.


where

Bk(ω) = Ψ(ω)∗
∂

∂θk
f(ω;θ)−1Ψ(ω) k = 1, . . . , q.

Remember that

n−2/α∥Z∥2N
L−→ Sα/2,

and then the asymptotic distribution is obtained by

xnPn(θ
0)

n−2/α∥Z∥2N
L−→ 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π
−π(B1(ω) +B1(ω))ijdω∫ π
−π(B2(ω) +B2(ω))ijdω

. . .∫ π
−π(Bq(ω) +Bq(ω))ijdω

 .

Thus the limit of −2x2
n
n logR(θ) is

−2
x2n
n

logR(θ0)
L−→ V ′W−1V ,

where

V =
1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij
Sα/2


∫ π
−π(B1(ω) +B1(ω))ijdω∫ π
−π(B2(ω) +B2(ω))ijdω

. . .∫ π
−π(Bq(ω) +Bq(ω))ijdω,


and the (a, b)-element of W is given in Theorem 6.3.1.

6.6 Appendix

6.6.1 Tightness

Lemma 6.6.1 (Klüppelberg and Mikosch (1996)). Suppose {Zt}1≤t≤n is a se-

quence of iid symmetric α-stable random variables for α ∈ (0, 2). Let ft be real
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numbers such that
∞∑

t=−∞
|ft|µ <∞

for some µ < α. If f0 = 0, then

(γ2n,Z , y
−1
n

∑
1≤t,s≤n

ft−sZtZs) →d (Y0, Z1(
∞∑
t=1

|ft + f−t|α)1/α).

If f0 ̸= 0, then

n−2/α
∑

1≤t,s≤n

ft−sZtZs →d f0Y0.

6.6.2 Regularly varying tail

Definition 6.6.2. A distribution F has exponential tails with rate α > 0, if

lim
t→∞

F̄ (t− u)

F̄ (t)
= eαu for all real u.

It is denoted by F ∈ Lα.

The definition is equivalent to the definition of regularly varying tail, if one

put log t and log u into the definition above. To guarantee ∥Z∥2N is in the domain

of attraction of a stable limit with α/2, we have the Theorem below.

Theorem 6.6.3 (Embrechts and Goldie (1980), Theorem 3). If both F ∈ Lα,

G ∈ Lα, then H = F ∗G ∈ Lα.

Remark 6.6.4. Regularly varying tail is necessary and sufficient condition for a

sequence of i.i.d random variables or random vectors in the domain of attraction

of a stable law.

6.6.3 Estimation of autocorrelation

To estimate Γ(0)−1Γ(j), we can see the problem as a fitting problem, i.e. fit the

spectral whose inverse matrix is

(I −Θe−ijω)(I −Θ′eijω).

Then the pivotal value satisfies

∂

∂Θ

∫ π

−π
(I −Θe−ijω)(I −Θ′eijω)g(ω) dω|θ=θ0 = 0.
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In fact, using formula

∂

∂Θ
tr(Θg(ω)) = Θ′g(ω),

∂

∂Θ
tr(ΘΘ′g(ω)) = g(ω)Θ + g(ω)Θ′,

we have

Γ(0)Θ0 = Γ(j)

by Herglotz’s spectral representation theorem. That is,

Γ(j) =

∫ π

−π
eijω dF (ω).

Thus we have

Θ0 = Γ(0)−1Γ(j).

Also, we can extend this full autocorrelation case to any one element case in the

same way. (See Section 6.4 above.)

6.6.4 Program

In this subsection, we give the program code of Mathematica we used for the

numerical results in Section 6.4. For practical usage, the sample size T , the length

p of VMA process, the dimension d, the true matrix A and the parametrized

matrix B has to be determined in advance.

MakeA[a_, b_, c_,

p_] := (A = Table[{{a^i, b^i/i^2}, {0, c^i}}, {i, 1, p}]);

VMA[p_] := (z = {RandomVariate[StableDistribution[1, 1.5, 0, 0, 1],

2]};

For[i = 1, i < T + p, i++,

z = Append[z,

RandomVariate[StableDistribution[1, 1.5, 0, 0, 1], 2]]];

obs = Table[

z[[p + j]] + Total[Table[A[[i]].z[[p + j - i]], {i, 1, p}]], {j,

1, T}]);

filter[P__] := -{-IdentityMatrix[d], P}

InvSpectral[x_, P__] := (G = filter[P];

Transpose[Total[MapThread[Times, {G, ec[-x, Length[G]]}]]].Total[

MapThread[Times, {G, ec[x, Length[G]]}]])

ec[w_, n_] := Table[E^(I (s - 1) w), {s, 1, n}]

SpectralMA[x_, P_] := (G = Prepend[P, IdentityMatrix[2]];
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Total[MapThread[Times, {G, ec[x, Length[G]]}]].Transpose[

Total[MapThread[Times, {G, ec[-x, Length[G]]}]]])

syu[x_, P__] := (G = Prepend[P, IdentityMatrix[2]];

Total[MapThread[Times, {G, ec[x, Length[G]]}]]);

e[r_, n_] := Table[E^(2 Pi I (r - 1) (s - 1)/T), {s, 1, n}]

Pdg[x_, r_, a_] :=

T^(-2/a) Outer[Times, e[r, T].N[x], Conjugate[e[r, T].N[x]]]

fitar[P__, r_] := (F = filter[P];

Transpose[

Total[MapThread[Times, {F, Conjugate[e[r, Length[F]]]}]]].Total[

MapThread[Times, {F, e[r, Length[F]]}]])

M[x_, P_, r_, a_] := D[Tr[fitar[P, r].Pdg[x, r, a]], t1]

MList[x_, P_, tr_, a_] :=

Chop[Table[M[x, P, r, a], {r, 1, T}] /. {t1 -> tr}];

ko[a_] := If[a == 1, 2/Pi, (1 - a)/(Gamma[2 - a] Cos[Pi a/2])];

Y0[a_] := StableDistribution[a/2, 1, 0, (ko[a/2])^(-2/a)];

Z0[a_] := StableDistribution[a, 0, 0, (ko[a])^(-1/a)];

Quant = Quantile[(RandomVariate[Z0[1.5], 10000]/

RandomVariate[Y0[1.5], 10000])^2, 0.90];

tr = Rationalize[

Chop[t1 /. (FindRoot[

D[Integrate[

Tr[InvSpectral[x, B].SpectralMA[x, A]], {x, -Pi, Pi}],

t1] == 0, {t1, 0.701}])[[1]]]];

w0 = Simplify[(D[InvSpectral[x, B], t1] /. {t1 -> tr})].SpectralMA[x,

A];

w = Integrate[Tr[w0.w0] + Tr[w0] Tr[w0], {x, -Pi, Pi}]/(2 Pi);

v := Total[Total[w0]]

VB[a_] := (k = 1; S = -1; s = 1;

While[(s > S/1000 || s == 0) && k < 20, S = S + s;

s = Abs[Integrate[v Cos[k x], {x, -Pi, Pi}]]^(a); Print[s]; k++]; S)

coef[a_] :=

Abs[Total[

Flatten[Chop[

D[Integrate[

ConjugateTranspose[syu[x, A]].InvSpectral[x, B].syu[x,

A], {x, -Pi, Pi}], t1] /. {t1 -> tr}], 1]]]^a

V[a_] := (VB[a] + coef[a])^(1/a)/Pi

Val = V[1.5];
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confi = Quant Val^2/w;

low = Chop[

t /. FindRoot[(T/Log[T])^(2/

1.5) ((Total[MList[X, B, t, 1.5]]/T)^2/(Total[

MList[X, B, t, 1.5]^2]/T)) == confi, {t, tr - 0.2}][[

1]]];

up = Chop[

t /. FindRoot[(T/Log[T])^(2/

1.5) ((Total[MList[X, B, t, 1.5]]/T)^2/(Total[

MList[X, B, t, 1.5]^2]/T)) == confi, {t, tr + 0.2}][[

1]]];



Chapter 7

Tail Index Estimation

7.1 Introduction and preliminaries

The self-normalized method has been focused on in these two decades, and many

interesting results are obtained. (See Griffin and Mason (1991), Klüppelberg

and Mikosch (1996), Logan et al. (1973), Peña et al. (2009).) We center on

this method since there are many random variables without sufficient order of

moments for estimation. As an example, any random variable belongs to the

domain of attraction of a stable law (not normal) has not well-defined variance.

In Chapter , We give a general and explicit formula for the moments of the

limiting distribution of symmetric self-normalized sum of i.i.d. random variables,

which belong to the domain of attraction of a stable law. The result shows that

the finite order moments for symmetric self-normalized sums are always finite.

As an application, tail index can be estimated through our results by using

moment estimators. In Section 7.1, we introduce the limiting distribution of

the self-normalized sums with its characteristic function. In Section 7.2, we

give the formula of the limiting moments of the symmetric self-normalized sums.

The proof of the main result is given in Section 7.3. The numerical results and

Mathematica code are given in Section 7.4.

Consider a sequence {X(i)}i=1,...,n thatX(i)’s are assumed to be independent

and identically distributed and belong to the domain of attraction of a stable law

G, the parameter of attracting stable law G is denoted by α. More specifically,

we assume that the density function g of the stable distribution G satisfies

xα+1g(x) → r, xα+1g(−x) → l,

where 0 < α < 2, r + l > 0. Also Un and V 2
n are defined as

Un =
X(1) + · · ·+X(n)

n1/α

100
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and

V 2
n =

|X(1)|2 + · · ·+ |X(n)|2

n2/α
.

To have the limiting distribution of Sn(2) (= Un/Vn) exist, we further assume

that

EX(i) = 0 if 1 < α < 2.

The limiting distribution of Sn(2) is denoted by S(2).

It is shown in Logan et al. (1973) that if α ̸= 1, the moments of S(2) can be

derived from
1

π

∫ ∞

0
φ(t)e−st dt =

∫ ∞

0
e−s2t2/2D(t) dt, (7.1.1)

where

φ(t) = EeiS(2)t = lim
n→∞

EeiSn(2)t,

the characteristic function of the limiting distribution of S(2), and

D(t) = (1− α)(2π−3)1/2
rDα−2(−it) + lDα−2(it)

rDα(−it) + lDα(it)
,

Dν(z) (z ∈ C) is the parabolic cylinder functions. (See Magnus and Oberhet-

tinger (1954).) Here are two important properties of parabolic cylinder functions

for calculation.

d

dz
Dν(z)−

z

2
Dν(z) +Dν+1(z) = 0; (7.1.2)

d

dz
Dν(z) +

z

2
Dν(z)− νDν−1(z) = 0. (7.1.3)

The calculation of the moments depends on the expansion of (7.1.1). We

first decompose the left hand side into the form of power series.

1

π

∫ ∞

0
φ(t)e−st dt =

1

π

∫ ∞

0

∞∑
k=0

φ(k)(0)

k!
tke−st dt

=

∞∑
k=0

φ(k)(0)

k!

1

π

∫ ∞

0
tke−st dt

=

∞∑
k=0

1

π
φ(k)(0)s−k−1. (7.1.4)

Secondly, the right hand side of (7.1.1) can be written as follows.

∫ ∞

0
e−s2t2/2D(t)dt =

∞∑
k=0

D(k)(0)

k!

∫ ∞

0
e−s2t2/2tk dt

=
∞∑
k=0

D(k)(0)

k!

∫ ∞

0
e−u

(
2u

s2

) k
2

· 1

s
√
2u

du (7.1.5)



7.2 Asymptotic Moments of Self-normalized Sums 102

(change the variable u =
s2t2

2
)

=

∞∑
k=0

D(k)(0)

k!
2

k−1
2 Γ(

k + 1

2
)s−k−1. (7.1.6)

Equating coefficients of like powers of s−1 in (7.1.4) and (7.1.5), we can see that

E(S(2)k) = ikφ(k)(0) =
D(k)(0)

k!
2

k−1
2 Γ(

k + 1

2
)π. (7.1.7)

The main purpose of this paper is to derive a general and explicit formula to

calculate the moments of the distribution S(2) when r = l.

7.2 Asymptotic Moments of Self-normalized Sums

We assume X(i)’s are symmetric, i.e., r = l, then D(t) becomes

D(t) = (1− α)(2π−3)1/2
Dα−2(−it) +Dα−2(it)

Dα(−it) +Dα(it)
≡ (1− α)(2π−3)1/2A(t).

For symmetry case, we simplify the notation of the limiting distribution S(2) by

S.

Theorem 7.2.1. Let S be defined above. Then for anym = 1, 2, . . . , E(S2m−1) =

0 and

E(S2m) =
(2m− 1)!!

(2m)!
2{(D(2m)

α−2 (0)−D(2m)
α (0))

− (1− α)

m−1∑
k=0

(−1)m−kA(2k)(0)

(2(m− k))!!(2k)!
D2(m−k)

α (0)},

where A(2k)(0) satisfies A(0) = Dα−2(0)/Dα(0) and

A(2k)(0) =
(−1)k

1− α
2(D

(2k)
α−2(0)−D(2k)

α (0))

− 2
k−1∑
l=0

A(2l)(0)

(2(k − l))!!(2l)!
(−1)(k−l)D2(k−l)

α (0)}.

Furthermore, suppose

D(2k)
ν (0) = η0(k) +

k∑
j=1

ηj(k)νj ,
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then ηj(k) satisfies

ηj(k) = −
∑k−j

t=0

(
k−t
j

)
νk−t(k − 1) + 2k−1

2 ηj(k − 1) for j ≥ 0;

ν1(k) = k!
(
(−1)k +

∑k
l=1

(2l−1)!!(−1)k−l

2ll!

)
;

νj(k) = −
∑k−j+2

l=1
(2k−1)!!

(2k−(2l−1))!!2l−1 ν
j−1(k − l)− kνj(k − 1) for j ≥ 2;

ν1(0) = 1, νj(0) = 0 for j ≥ 2; ν0(k) = 0 for any k ≥ 0;

ηj(k) = 0 for j > k; ηk(k) = (−1)k for any k ≥ 0.

Corollary 7.2.2. The finite order moments for self-normalized sum of i.i.d.

random variables in the domain of attraction of a stable law are always finite.

7.3 Proof of Theorem 7.2.1

We show Theorem 7.2.1 in this section. Set

Aν(t) = Dν(−it) +Dν(it),

then we obtain

A(t) =
Dα−2(−it) +Dα−2(it)

Dα(−it) +Dα(it)
=
Aα−2(t)

Aα(t)
.

From (7.1.7), the moment of the limiting distribution can be simply written as

E(Sk) =
(k − 1)!!

k!
ik(1− α)A(k)(0). (7.3.1)

Note that d
dtDν(−it) = −i d

dzDν(z)
∣∣∣
z=−it

and d
dtDν(it) = i d

dzDν(z)
∣∣∣
z=it

, it is

obvious that

Ak(ν) ≡
dk

dtk
Aν(t)

∣∣∣
t=0

=

0 if k is odd;

(−1)k/22D
(k)
ν (0), if k is even,

where D
(k)
ν (0) = dk

dzk
Dν(z)

∣∣∣
z=0

. To prove the first statement, we use a recursive

formula for nth derivative.

Lemma 7.3.1 (Xenophontos (2007)).

(
u(x)

v(x)

)(n)

=
1

v(x)

u(n)(x)− n!

n∑
j=1

v(x)(n+1−j)

(n+ 1− j)!(j − 1)!

(
u(x)

v(x)

)(j−1)
 .
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Applying the formula to the case that u(x) = Aα−2(x) and v(x) = Aα(x),

we have

A(2k)(0) =
1

1− α
(A2k(α− 2)−A2k(α))−

k−1∑
l=0

(
2k

2l

)
A2(k−l)(α)A(2l)(0).

The first result is straightforward from (7.3.1).

Next, we show the second half of Theorem 7.2.1. Differentiating (7.1.2) and

(7.1.3) iteratively, we have

D(k)
ν (z)− z

2
D(k−1)

ν (z)− k − 1

2
D(k−2)

ν (z) +D
(k−1)
ν+1 (z) = 0;

D(k)
ν (z) +

z

2
D(k−1)

ν (z) +
k − 1

2
D(k−2)

ν (z)− νD
(k−1)
ν−1 (z) = 0.

Thus D
(k)
ν (0) can be derived from

D(k)
ν (0) =

k − 1

2
D(k−2)

ν (0)−D
(k−1)
ν+1 (0);

D(k)
ν (0) = −k − 1

2
D(k−2)

ν (0) + νD
(k−1)
ν−1 (0).

In the case when k is odd, rewrite 2k + 1 as k, then

D(2k+1)
ν (0) = −kD(2k−1)

ν (0) + ν(
2k − 1

2
D

(2k−2)
ν−1 (0)−D(2k−1)

ν (0))

= −kD(2k−1)
ν (0)

−ν
k∑

l=1

(2k − 1)!!

(2k − 2l + 1)!!2l−1
D(2k−2l+1)

ν (0) + ν
(2k − 1)!!

2k
Dν−1(0).

This is a recurrence formula for D
(2k+1)
ν (0). If we can expand it, then it must be

the product of a polynomial of ν and Dν−1(0). Let νj(k) denote the coefficient

of νj in the case of (2k + 1)th derivative.

For the initial values, we can see that ν1(0) = 1, νj(0) = 0 for all j ≥ 2 and

ν0(k) = 0 for all k ≥ 0 from (7.1.3). After some painful calculation, we have

ν1(k) = k!

(
(−1)k +

k∑
l=1

(2l − 1)!!(−1)k−l

2ll!

)
;

νj(k) = −
k−j+2∑
l=1

(2k − 1)!!

(2k − (2l − 1))!!2l−1
νj−1(k − l)− kνj(k − 1) for j ≥ 2.

(7.3.2)

From the recurrence formula, one can see that the highest degree of the

polynomial is k + 1, which can be shown by the induction. Using this property
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reversely, one also can see that νj(k) = 0 for any j and k satisfying j ≥ k + 2.

Corollary 7.3.2.

νk+1(k) = (−1)k, νk(k) = (−1)k
k

2
. (7.3.3)

Proof. Applying this result to (7.3.2),

νk+1(k) = −νk(k − 1)

holds, and since the initial value ν1(0) = 1, we have

νk+1(k) = (−1)k. (7.3.4)

Also applying the result to νk(k),

νk(k) = −νk−1(k − 1)− 1

2
,

which implies

νk(k) = (−1)k
k

2
,

since ν0(0) = 0.

On the other hand, when k is even, rewrite 2k + 2 as k and we have

D(2k+2)
ν (0) =

2k + 1

2
D(2k)

ν (0)−D
(2k+1)
ν+1 (0).

Here, let ηj(k) denote the coefficient of νj in the case of 2kth derivative. Then

we have

ηj(k) = −
k−j∑
t=0

(
k − t

j

)
νk−t(k − 1) +

2k − 1

2
ηj(k − 1) for j ≥ 0.

From (7.3.4), ηj(k) = 0 if j > k and ηk(k) = −νk(k − 1) = (−1)k.

7.4 Examples

7.4.1 Mathematica code

This section provides Mathematica code. The functions f(j, k) and g(j, k) denote

the function νj(k) and ηj(k) in the previous section, respectively. The function

A(n, a) is corresponding to 1/2 A2n(α), while CA(n, a) represents the function

A(2n)(0) above. Lastly, function M(n, a) indicates the 2nth moment of the limit

distribution S.
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f[1, k_] :=

k! ((-1)^k + Sum[(2 l - 1)!! (-1)^(k - l)/(2^l l!), {l, 1, k}]);

f[j_, k_] :=

If[j == 0, 0,

If[k <= -1, 0,

If[k > -1 && j >= 2,

-(2 k - 1)!! Sum[

f[j - 1, k - l]/((2 k - (2 l - 1))!! 2^(l - 1)),

{l, 1, k - j + 2}] - k f[j, k - 1]]]];

g[j_, k_] :=

If[j > k, 0,

If[j == k, (-1)^k,

If[k > 0, -Sum[

Binomial[k - t, j] f[k - t, k - 1], {t, 0, k - j}]

+ (2 k - 1) g[j, k - 1]/2, 0]]];

A[n_, a_] := (-1)^n g[0, n] + (-1)^n Sum[g[t, n] a^t, {t, 1, n}];

CA[n_, a_] :=

If[n > 0, (A[n, a - 2] - A[n, a])/(1 - a) - Sum[CA[t, a]

Binomial[2 n, 2 t] A[n - t, a], {t, 1, n - 1}], 0];

M[n_, a_] :=

Simplify[(2 n - 1)!!/(2 n)! (-1)^n (1 - a) CA[n, a], a > 0];

7.4.2 Some results and knowledge

Using the code above, we obtain the general result for the moments of symmetric

self-normalized moments and some special cases of α = 0.5, α = 1.5 and α = 2.

Table 7.1: 2kth moments of symmetric self-normalized sum for the case of
α = 0.5, 1.5, 2.

k E(S2k) α = 0.5 α = 1.5 α = 2

1 1 1 1 1

2 1 + α 1.5 2.5 3

3 1 + 3α+ 2α2 3 10 15

4 1/3(3 + 20α+ 34α2 + 17α3) 7.875 55.625 105

5 1/3(3 + 40α+ 130α2 + 155α3 + 62α4) 26.25 397.5 945

When α = 2, the limiting distribution S is standard normal distribution.

From Table 7.1, we can see the result is corresponding to the moments we can

obtain from other methods.
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7.4.3 Tail index estimation

Hill’s estimator is proposed to be an estimator for tail index. It is defined as

α̂H =
(1
k

k∑
j=1

logXn,n−j+1 − logXn,n−k

)−1
,

where Xn,1 ≤ · · · ≤ Xn,n are the order statistics of X(1), . . . , X(n). (See Hall

(1982).) As an alternative to it, we can apply the result above to the derivation

of the tail index of the random variables in the domain of stable distribution.

This is achieved by moment estimators after calculating the asymptotic moments

for the self-normalized sums.

As an example, we use the fourth moment estimator of the self-normalized

sums, which is denoted by

α̂ =
1

K

K∑
i=1

S4
i − 1, (7.4.1)

where K is the number of blocks, for the self-normalized sums, of the original

samples.

We compare the performance of (7.4.1) with Hill’s estimator by means of

Monte Carlo experiments. All numerical results in this paper are based on 250

simulations. The sample sizes are 200 and 2000. The latter size is typical for

current financial data, and the former is relatively small for the observation of

the behaviors of the estimates in small samples. In each case, we evaluate the

performance of the estimators on the basis of i.i.d. random variables and depen-

dent ones. The number in the parentheses after the name of the distribution is

the tail index of random variables.

For dependent case, we follow the examples in Danielsson et al. (2001). The

MA process Y (t) = X(t)+X(t−1), where the X(t) are i.i.d. stable with the tail

index α is considered. The other stochastic process Y (t), stochastic volatility, is

defined as follows:

Y (t) = U(t)X(t)H(t),

U(t) i.i.d. discrete uniform on −1 and 1,

X(t) =
√

57/Z(t), Z(t) ∼ i.i.d. χ2
1,

H(t) = 0.1Q(t) + 0.9H(t− 1), Q(t) ∼ i.i.d. N (0, 1).

This process is denoted by S.V.(1). Its marginal distribution has a Student-t

with 1 degree of freedom.
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For Hill’s estimator, it is known that k = O(n2/3) is optimal (Hall (1982),

Resnick and Stărică (1998)). However, k is not specified since it is sensitive to

the sample size and the assumed model. For simplicity, we use k = ⌈n2/3⌉ in all

simulations, where ⌈·⌉ is the ceiling function. On the other hand, let T be the

number of samples for a self-normalized sum. To guarantee K is large enough,

we use bootstrap samples for the self-normalized sums. For each distribution, we

report the true value of α, the optimal T for the estimation of α, the mean and

the root mean squared error (RMSE) of each estimator in the case that K = 5n.

Table 7.2: Monte Carlo experiment with n = 200.

Distribution α T Mean (α̂H) Mean (α̂) RMSE (α̂H) RMSE (α̂)

Stable(0.5) 0.5 8 0.468 0.506 0.082 0.092
Stable(1) 1 10 0.988 0.996 0.169 0.186
Stable(1.5) 1.5 12 1.690 1.475 0.366 0.334
Stable(2) 2 16 2.574 1.995 0.710 0.516
Student(0.5) 0.5 5 0.527 0.493 0.093 0.082
Student(1.5) 1.5 19 1.290 1.493 0.296 0.366

MA(0.5) 0.5 6 0.489 0.511 0.014 0.010
MA(1) 1 8 1.019 1.007 0.045 0.053
MA(1.5) 1.5 9 1.690 1.492 0.172 0.200
MA(2) 2 12 2.631 2.016 0.608 0.433
S.V.(1) 1 5 1.617 1.020 0.461 0.021

From Table 7.2, the moment estimator of the self-normalized sums can be

sufficiently accurate even in the small sample cases. The RMSEs of both Hill’s

estimator and the moment estimator become larger as the tail index increases.

The difference between two estimators is that the RMSE of Hill’s estimator

becomes large more sharply than that of the moment estimator as the tail index

grows larger than 1 in the stable case.

Table 7.3: Monte Carlo experiment with n = 2000.

Distribution α T Mean (α̂H) Mean (α̂) RMSE (α̂H) RMSE (α̂)

Stable(0.5) 0.5 23 0.484 0.500 0.040 0.037
Stable(1) 1 34 0.999 1.001 0.079 0.078
Stable(1.5) 1.5 43 1.753 1.505 0.292 0.148
Stable(2) 2 46 3.877 2.005 1.898 0.170
Student(0.5) 0.5 11 0.502 0.502 0.039 0.030
Student(1.5) 1.5 79 1.414 1.505 0.139 0.208

MA(0.5) 0.5 17 0.485 0.502 0.003 0.002
MA(1) 1 23 1.006 1.002 0.010 0.012
MA(1.5) 1.5 28 1.792 1.500 0.129 0.024
MA(2) 2 35 3.919 1.996 3.767 0.055
S.V.(1) 1 5 1.900 0.969 0.836 0.003
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As shown in Table 7.3, we can see that the moment estimators attain to

the true tail index if we choose a proper T for each case. The RMSEs of two

estimators are lower for the larger sample size, while the comparison between

two estimators is almost similar to the sample size n = 200. However, we also

find that the behavior of the moment estimators in the student case and the S.V.

case are a little different from the stable case and MA case from both tables. The

representation of the tail of t-distribution is more complicate than that of stable,

since there is a second term in the representation of the former. Nevertheless,

the moment estimator of self-normalized sums performs well in the estimation

of the tail index.
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probabilités aux sommes de quantités dépendantes. Mathematische An-
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