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Part 1. preliminaries

1. inequality

Theorem 1.1 (Lyapunov’s inequality). Let X be a random variable and 0 < s < r. If
E(|X|r) <∞, then

{E(|X|s)}1/s ≤ {E(|X|r)}1/r.

Corollary 1.2. Suppose p > q > 0. If E(|X|p) <∞, then

E(|X|q) <∞.

We will also give some inequalities for martingales.

Theorem 1.3. Suppose {Yn}n=0,1,... is a martingale. Let {Xn} be the martingale difference
for {Yn}, i.e, Xk = Yk − Yk−1, then

• for 1 ≤ r < 2, if E(|Xk|r) <∞ for all k, then

E(|Yn|r) ≤ 2
n∑

k=1

E(|Xk|r).

• for r ≥ 2, if E(|Xk|)r <∞ for all k, then

E(|Yn|r) ≤ Crn
r/2−1

n∑
k=1

E(|Xk|r),

where Cr = [ 8(r − 1)max(1, 2r−2) ]r.
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2. Edgeworth Expansion

Let ϕX(u) = E[ exp(iu′X) ] be the characteristic function of X. Then the cumulant
function is given by

χr(u;X) = irκr[u
′X ] = (∂ϵ)

r
0 logφX(ϵ).

If we use tensor to rewrite it, then

χr(u;X) = ir
d∑

α1,...,αr=1

uα1 · · ·uαrλ
α1···αr [X ],

where λα1···αr [X ] is defined as

λα1···αr [X ] = (−i)r(∂uα1
)0 · · · (∂uαr

)0 logφX(ϵ).

Part 2. Principles of Bootstap

3. Introduction

If we wish to estimate a functional of a population function F , such as a population
mean

µ =

∫
xdF (x),

consider employing the same functional of the sample (or empirical) distribution function

F̂ , which in this instance is the sample mean

X̄ =

∫
xdF̂ (x).

This argument is not always practicable– a probability density is just one example of a
functional of F that is not directly amenable to this treatment.

The abbreviation ”d.f.” stands for ”distribution function.” The paris (F, F̂ ), representing
population d.f., sample d.f., will often be written as (F0, F1) during this chapter, hence
making it easier to introduce bootstrap iteration, where for general i ≥ 1, Fi denotes the
d.f. of a sample drawn from Fi−1 conditional on Fi−1. For the same reason, the pair
(X ,X ∗) will often be written as (X1,X2).

An estimate θ̂ is a function of the data and may also be regarded as a functional of the
sample distribution function F̂ . This we do by using square brackets for the former and
round brackets for the latter:

θ̂ = θ[X ] = θ(F̂ ).

Formally, given a functional ft from a class {ft : t ∈ τ}, we wish to determine that value
t0 of t that solves an equation

(3.1) E{ ft(F0, F1) |F0} = 0,

where F0 denotes the population distribution function and F1 the distribution function
”of the sample”. we call (3.1) the population equation because we need properties of the
population if we are to solve this equation exactly.
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For example, correcting θ̂ for bias is equivalent to finding that value t0 that solves (3.1)
when

(3.2) ft(F0, F1) = θ(F1)− θ(F0) + t.

Our bias-corrected estimate would be θ̂+ t0. On the other hand, to construct a symmetric,
95% confidence interval for θ0(≡ θ(F0)), solve (3.1) when

(3.3) ft(F0, F1) = I{θ(F1)− t ≤ θ(F0) ≤ θ(F1) + t} − 0.95.

The confidence interval is (θ̂ − t0, θ̂ + t0), where θ̂ = θ(F1).
Similarly, replace the pair (F0, F1) in (3.1) by (F1, F2), thereby transforming (3.1) to

E{ ft(F1, F2) |F1} = 0.

We call this the sample equation because we know everything about it once we know
everything about it once we know the sample distribution function F1. In particular, its
solution t̂0 is a function of the sample values.

We shall refer to this iteration as ”the bootstrap principle”.
We call t̂0 and E{ ft(F1, F2) |F1} ”the bootstrap estimates” of t0 and E{ ft(F0, F1) |F0},

respectively. They are obtained by replacing F0 by F1 in formulae for t0 and E{ ft(F0.F1) |F0}.
In the bias correction problem, where ft is given by (3.2), the bootstrap version of our bias-

corrected estimate is θ̂0+t̂0. In the confidence interval problem where (3.3) describes ft, our

bootstrap confidence interval is (θ̂− t̂0, θ̂+ t̂0). The latter is commonly called a (symmetric)
percentile-method confidence interval for θ0.

It is appropriate now to give detailed definitions of F1 and F2. There are at least two
approaches, suitable for nonparametric and parametric problems respectively. In both,
inference is based on a sample X of n random observations of the population. In the
nonparametric case, if we denote the population by X0 then we have a nest of sampling
operations, like our nest of dolls: X is drawn at random from X0 and X ∗ is drawn at random
from X ∗. In the parametric case, F0 is assumed completely known up to a finite vector
λ0 of unknown parameters. To indicate this dependence we write F0 = F(λ0), and element

of a class {F(λ),λ ∈ Λ } of possible distributions. Let λ̂ be an estimate of λ0 computed
from X , then F1 = F(λ̂), the distribution function obtained on replacing ”true” parameter

values by their sample estimates. Let X ∗ denote the sample drawn at random from the
distribution with distribution function F(λ̂) and let λ̂∗ = λ[X ∗ ] denote the version of λ̂

computed for X ∗ instead of X . Then F2 = F(λ̂∗).

Part 3. Principles of Edgeworth Expansion

In this chapter we define, develop, and discuss Edgeworth expansions as approximations
to distributions of estimates θ̂ os unknown quantities θ0. We call θ0 a ”parameter”, for

want of a better term. Briefly, if θ̂ is constructed from a sample of size n, and if n1/2(θ̂−θ0)

is asymptotically normally distributed with 0 mean and variance σ2, then in a great many
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cases of practical interest the distribution function of n1/2(θ̂ − θ0) may be expanded as a

power series in n−1/2,

(3.4) P{n1/2(θ̂ − θ0)/σ ≤ x} = Φ(x) + n−12p1(x)ϕ(x) + · · ·+ n−j/2pj(x)ψ(x) + . . . ,

where ϕ(x) = (2π)−1/2e−x2/2 is the standard normal density function and

Φ(x) =

∫ x

−∞
ϕ(u) du

is the standard normal distribution function. Formula (3.4) is termed an Edgeworth ex-
pansion. The functions pj are polynomials with coefficients depending on cumulants of

θ̂ − θ0.
For a general random variable Y with characteristic function χ, the jth cumulants, κj ,

of Y is defined to be the coefficient of 1
j!(it)

j in a power series expansion of logχ(t):

χ(t) = exp{κ1it+
1

2
κ2(it)

2 + · · ·+ 1

j!
κj(it)

j + . . . }.

Equivalently, since

χ(t) = 1 + E(Y )it+
1

2
E(Y 2)(it)2 + · · ·+ 1

j!
E(Y j)(it)j + . . . ,

cumulants may be defined in terms via the formal identity

∑
j≥1

κj(it)
j = log

 1 +
∑
j≥1

1

j!
E(Y j)(it)j

 =
∑
k≥1

(−1)k+1 1

k

∑
j≥1

1

j!
E(Y j)(it)j


k

.

Equating coefficients of (it)j we deduce that

(3.5)

κ1 = E(Y ),

κ2 = E(Y 2)− (EY )2 = Var(Y ),

κ3 = E(Y 3)− 3E(Y 2)E(Y ) + 2(EY )3 = E(Y − EY )3,

κ4 = E(Y 4)− 4E(Y 3)E(Y )− 3(EY 2)2 + 12E(Y 2)(EY )2 − 6(EY )4

= E(Y −EY )4 − 3(VarY )2,


and so on, the formula for κ10 containing 41 such terms.

Part 4. Bootstrap Curve Estimation

4. Nonparametric Density Estimation

Under the assumption that the density is univariate with at least two bounded deriva-
tives, and using a nonnegative kernel function, the size of bandwidth that optimizes perfor-
mance of the estimator in any Lp metric (1 ≤ p <∞) is n−1/5. The number of ”parameter”
needed to model the unknown density within a given interval is approximately equal to
the number of bandwidths that can be fitted into that interval, and so is roughly of size
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n1/5. Thus, nonparametric density estimation (using a second-order kernel) involves the

adaptive fitting of approximately n1/5 parameters, this number growing with increasing n.
we would argue that the problems of point estimation and interval estimation are dis-

tinctly different, with different aims and different ends in mind. There is still a lot to be
learned about the interval estimation problem in the context of density estimation, and
our theoretical contributions here should be regarded only as a first step towards a deeper,
more practically oriented appreciation.

4.1. Different Bootstrap Methods in Density Estimation. Let X = {X1, . . . , Xn}
denote a random sample drawn from a distribution with density f , and let K be a bounded
function with the property that for some integer r ≥ 1

(4.1)

∫ ∞

−∞
yiK(y) dy


= 1 if i = 0,

= 0 if 1 ≤ i ≤ r − 1,

̸= 0 if i = r.

If ∫
(1 + |y|r)|K(y)| dy <∞

then the integrals in (4.1) are well defined. A function K satisfying (4.1) is called an rth
order kernel and may be used to construct a kernel-type nonparametric density estimator
of f(x),

f̂(x) = (nh)−1
n∑

i=1

K{(x−Xi)/h},

where h is the ”bandwidth” or ”window size” of the estimator. The bandwidth is a very
important ingredient of the definition of f̂ . It determines the sizes of bias and variance, and
so plays a major role in governing the performance of f̂ . Let think about the expectation
of kernel-type nonparametric densities µj ,

µj(x) = h−1E[K{(x−X)/h}j ] =
∫
K(y)jf(x− hy) dy.

Then we can see that

b(x) = E{f̂(x)} − f(x) = hrk1f
(r)(x) + o(hr);

Var{f̂(x)} = (nh)−1k2f(x) + o{(nh)−1}.
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5. Edgeworth expansion for time series

Let UT (u1, . . . , up)
′ be a measurable function of a sample X1, . . . , XT . Suppose that all

order of cumulants of UT exist and satisfy the following:

ci = cum(ui) = T−1/2c
(1)
i + T−1c

(2)
i + o(T−1),

cij = cum(ui, uj) = c
(1)
ij + T−1/2c

(2)
ij + T−1c

(3)
ij + o(T−1),

cijk = cum(ui, uj , uk) = T−1/2c
(1)
ijk + T−1c

(2)
ijk + o(T−1),

cijkm = cum(ui, uj , uk, um) = T−1c
(1)
ijkm + o(T−1).

P (u1 < y1, . . . , up < yp) =

∫ y1

−∞
· · ·

∫ yp

−∞
N (y; Ω)

[
1 +

∑
i

( c(1)i√
T

+
c
(2)
i

T

)
Hi(y)

+
1

2

∑
i,j

( c(2)ij√
T

+
c
(3)
ij

T
+
c
(1)c

(1)
j

i

T

)
Hij(y) +

∑
i,j,k

( c
(1)
ijk

6
√
T

+
c
(2)
ijk

6T
+
c
(1)
i c

(2)
jk

2T

)
Hijk(y)

+
∑

i,j,k,m

(c(1)ijkm

24T
+
c
(2)
ij c

(2)
km

8T
+
c
(1)
i c

(1)
jkm

6T

)
Hijkm(y) +

∑
i,j,i′,j′,k′

c
(2)
ij c

(1)
i′j′k′

12T
Hiji′j′k′(y)

+
∑

i,j,k,i′,j′,k′

c
(1)
ijkc

(1)
i′j′k′

72T
Hijki′j′k′(y)

]
dy + o(T−1),

where y = (y1, . . . , yp)
′, N (y; Ω) = (2π)−p/2|Ω|1/2 exp(−1/2y′Ω−1y), Ω = (c

(1)
ij )

Hj1,...js(y) =
(−1)s

N (y; Ω)

∂s

∂yj1 · · · ∂yjs
N (y; Ω).

The validity of Edgeworth expansion will be verified by the argument on the higher order
cumulants and moments and Chebyshev’s inequality.

6. words and phrases

(1) matryoshka dolls
each of a set of brightly painted hollow dolls of varying sizes, designed to nest inside
one another.

(2) hollow
having a hole or empty space inside

(3) amenable
open and responsive to suggestion

(4) elaboration
(5) awkward causing difficulty; hard to do or deal with
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(6) trifle
a thing of little value or importance
treat without seriousness or respect

(7) freckle
a small patch of light brown color on the skin, often becoming more pronounced
through exposure to the sun

(8) patch

(9) refine

(10) facility
space of equipment necessary for doing something

(11) allude
suggest or call attention to indirectly; hint at

(12) ingredient
any of the foods or substances that are combined to make a particular dish


